Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Brain-Machine-Brain Interface

Thumbnail
View / Download
17.1 Mb
Date
2011
Author
O'Doherty, Joseph Emmanuel
Advisor
Nicolelis, Miguel AL
Repository Usage Stats
1,029
views
662
downloads
Abstract

Brain-machine interfaces (BMIs) use neuronal activity to control external actuators. As such, they show great promise for restoring motor and communication abilities in persons with paralysis or debilitating neurological disorders.

While BMIs aim to enact normal sensorimotor functions, so far they have lacked afferent feedback in the form of somatic sensation. This deficiency limits the utility of current BMI designs and may hinder the translation of future clinical BMIs, which will need a means of delivering sensory signals from prosthetic devices back to the user.

This dissertation describes the development of brain-machine-brain interfaces (BMBIs) capable of bidirectional communication with the brain. The interfaces consisted of efferent and afferent modules. The efferent modules decoded motor intentions from the activity of populations of cortical neurons recorded with chronic multielectrode recording arrays. The activity of these ensembles was used to drive the movements of a computer cursor and a realistic upper-limb avatar. The afferent modules encoded tactile feedback about the interactions of the avatar with virtual objects through patterns of intracortical microstimulation (ICMS).

I first show that a direct intracortical signal can be used to instruct rhesus monkeys about the direction of a reach to make with a BMI. Rhesus monkeys placed an actuator over an instruction target and obtained, from the target's artificial texture, information about the correct reach path. Initially these somatosensory instructions took the form of vibrotactile stimulation of the hands. Next, ICMS of primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PPC) in another was substituted for this peripheral somatosensory signal. Finally, the monkeys made direct brain-controlled reaches using the activity of ensembles of primary motor cortex (M1) cells, conditional on the ICMS cues. The monkey receiving ICMS of S1 was able to achieve the same level of proficiency with ICMS as with the stimulus delivered to the skin of the hand. The monkey receiving ICMS of PPC was unable to perform the task above chance. This experiment indicates that ICMS of S1 can form the basis of an afferent prosthetic input to the brain for guiding brain-controlled prostheses.

I next show that ICMS of S1 can provide feedback about the interactions of a virtual-reality upper-limb avatar and virtual objects, enabling active touch. Rhesus monkeys initially controlled the avatar with the movements of their arms and used it to search through sets of up to three objects. Feedback in the form of temporal patterns of ICMS occurred whenever the avatar touched a virtual object. Monkeys learned to use this feedback to find the objects with particular artificial textures, as encoded by the ICMS patterns, and select those associated with reward while avoiding selecting the non-rewarded objects. Next, the control of the avatar was switched to direct brain-control and the monkeys continued to move the avatar with motor commands derived from the extracellular neuronal activity of M1 cells. The afferent and efferent modules of this BMBI were temporally interleaved, and as such did not interfere with each other, yet allowed effectively concurrent operation. Cortical motor neurons were measured while the monkey passively observed the movements of the avatar and were found to be modulated, a result that suggests that concurrent visual and artificial somatosensory feedback lead to the incorporation of the avatar into the monkey's internal brain representation.

Finally, I probed the sensitivity of S1 to precise temporal patterns of ICMS. Monkeys were trained to discriminate between periodic and aperiodic ICMS pulse trains. The periodic pulse-trains consisted of 200 Hz bursts at a 10 Hz secondary frequency. The aperiodic pulse trains had a distorted periodicity and consisted of 200 Hz bursts at a variable instantaneous secondary frequency. The statistics of the aperiodic pulse trains were drawn from a gamma distribution with equal mean inter-burst intervals to the periodic pulse trains. The monkeys were able to distinguish periodic pulse trains from aperiodic pulse trains with coefficients of variation of 0.25 or greater. This places an upper-bounds on the communication bandwidth that can be achieved with a single channel of temporal ICMS in S1.

In summary, rhesus monkeys were augmented with a bidirectional neural interface that allowed them to make reaches to objects and discriminate them by their textures--all without making actual movements and without relying on somatic sensation from their real bodies. Both action and perception were mediated by the brain-machine-brain interface. I probed the sensitivity of the afferent leg of the interface to precise temporal patterns of ICMS. Moreover, I describe evidence that the BMBI controlled avatar was incorporated into the monkey's internal brain representation. These results suggest that future clinical neuroprostheses could implement realistic feedback about object-actuator interactions through patterns of ICMS, and that these artificial somatic sensations could lead to the incorporation of the prostheses into the user's body schema.

Type
Dissertation
Department
Biomedical Engineering
Subject
Biomedical Engineering
Neurosciences
Physiology
active touch
bidirectional
brain-machine interface
closed-loop
intracortical microstimulation
rhesus macaque
Permalink
https://hdl.handle.net/10161/3951
Citation
O'Doherty, Joseph Emmanuel (2011). Brain-Machine-Brain Interface. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3951.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University