Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable Leuko-polymersomes That Adhere Specifically to Inflammatory Markers

Thumbnail
View / Download
1.3 Mb
Date
2010
Authors
Rawson, Jeff
Therien, Michael J
Repository Usage Stats
415
views
262
downloads
Abstract
The polymersome, a fully synthetic cell mimetic, is a tunable platform for drug delivery vehicles to detect and treat disease (theranostics). Here, we design a leuko-polymersome, a polymersome with the adhesive properties of leukocytes, which can effectively bind to inflammatory sites under flow. We hypothesize that optimal leukocyte adhesion can be recreated with ligands that mimic receptors of the two major leukocyte molecular adhesion pathways, the selectins and the integrins. Polymersomes functionalized with sialyl Lewis X and an antibody against ICAM-1 adhere avidly and selectively to surfaces coated with inflammatory adhesion molecules P-selectin and ICAM- I under flow. We find that maximal adhesion occurs at intermediate densities of both sialyl Lewis X and anti-ICAM- I, owing to synergistic binding effects between the two ligands. Leuko-polymersomes bearing these two receptor mimetics adhere under physiological shear rates to inflamed endothelium in an in vitro flow chamber at a rate 7.5 times higher than those to uninflamed endothelium. This work clearly demonstrates that polymersomes bearing only a single ligand bind less avidly and with lower selectivity, thus suggesting proper mimicry of leukocyte adhesion requires contributions from both pathways. This work establishes a basis for the design of polymersomes for targeted drug delivery in inflammation.
Type
Other article
Subject
intercellular-adhesion molecule-1
infrared-emissive polymersomes
cell-adhesion
in-vivo
p-selectin
endothelial-cells
drug-delivery
system
receptors
vesicles
chemistry, multidisciplinary
chemistry, physical
materials science, multidisciplinary
Permalink
https://hdl.handle.net/10161/3993
Published Version (Please cite this version)
10.1021/1a1017032
Citation
Robbins,Gregory P.;Saunders,Randi L.;Haun,Jered B.;Rawson,Jeff;Therien,Michael J.;Hammer,Daniel A.. 2010. Tunable Leuko-polymersomes That Adhere Specifically to Inflammatory Markers. Langmuir 26(17): 14089-14096.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Therien

Michael J. Therien

William R. Kenan, Jr. Distinguished Professor of Chemistry
Our research involves the synthesis of compounds, supramolecular assemblies, nano-scale objects, and electronic materials with unusual ground-and excited-state characteristics, and interrogating these structures using state-of-the-art transient optical, spectroscopic, photophysical, and electrochemical methods. Over chemical dimensions that span molecules to materials, we probe experimental and theoretical aspects of charge migration reactions and ultrafast electron transfer processes. Insights
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University