Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microbial inactivation of Pseudomonas putida and Pichia pastoris using gene silencing.

Thumbnail
View / Download
494.5 Kb
Date
2010-05-01
Authors
Morse, Thomas O
Morey, Sara J
Gunsch, Claudia K
Repository Usage Stats
247
views
360
downloads
Abstract
Antisense deoxyoligonucleotide (ASO) gene silencing was investigated as a potential disinfection tool for industrial and drinking water treatment application. ASOs bind with their reverse complementary mRNA transcripts thereby blocking protein translation. While ASO silencing has mainly been studied in medicine, it may be useful for modulating gene expression and inactivating microorganisms in environmental applications. In this proof of concept work, gene targets were sh ble (zeocin resistance) and todE (catechol-2,3-dioxygenase) in Pichia pastoris and npt (kanamycin resistance) in Pseudomonas putida. A maximum 0.5-fold decrease in P. pastoris cell numbers was obtained following a 120 min incubation with single-stranded DNA (ssDNA) concentrations ranging from 0.2 to 200 nM as compared to the no ssDNA control. In P. putida, a maximum 5.2-fold decrease was obtained after 90 min with 400 nM ssDNA. While the silencing efficiencies varied for the 25 targets tested, these results suggest that protein activity as well as microbial growth can be altered using ASO gene silencing-based tools. If successful, this technology has the potential to eliminate some of the environmental and health issues associated with the use of strong chemical biocides. However, prior to its dissemination, more research is needed to increase silencing efficiency and develop effective delivery methods.
Type
Journal article
Subject
Colony Count, Microbial
DNA, Single-Stranded
Disinfection
Drug Resistance, Bacterial
Environmental Microbiology
Gene Silencing
Genetic Techniques
Kanamycin Resistance
Microbial Sensitivity Tests
Oligonucleotides, Antisense
Pichia
Pseudomonas putida
RNA, Messenger
Time Factors
Permalink
https://hdl.handle.net/10161/4030
Published Version (Please cite this version)
10.1021/es901404a
Publication Info
Morse, Thomas O; Morey, Sara J; & Gunsch, Claudia K (2010). Microbial inactivation of Pseudomonas putida and Pichia pastoris using gene silencing. Environ Sci Technol, 44(9). pp. 3293-3297. 10.1021/es901404a. Retrieved from https://hdl.handle.net/10161/4030.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Gunsch

Claudia K. Gunsch

Professor in the Department of Civil and Environmental Engineering
Claudia Gunsch is a Professor of Civil and Environmental Engineering and holds secondary appointments in the Nicholas School of the Environment and the Department of Biomedical Engineering. She joined the Duke Faculty in 2004 after obtaining her PhD from the University of Texas at Austin, her MS from Clemson University and her BS from Purdue University. Currently, she serves as the Director for PreMiEr, the National Science Foundation Engineering Research Center for Precis
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University