Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis of copper nanocatalysts with tunable size using diblock copolymer solution micelles

Thumbnail
View / Download
2.8 Mb
Date
2010-04-08
Authors
Liu, Y
Lor, C
Fu, Q
Pan, D
Lei, D
Liu, J
Lu, J
Repository Usage Stats
291
views
644
downloads
Abstract
Self-assembled solution micelles prepared from polystyrene-b-poly(4- vinylpyridine) (PS-b-P4VP) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP), have been employed as templates to synthesize copper nanocatalysts which are regarded as an excellent catalyst system for 1D nanomaterial synthesis. We have demonstrated that uniform-sized nanoparticles with diameters ranging from 1 to 15 nm have been generated. We have revealed that nanocatalyst size can be rationally tailored by adjusting the interaction between copper precursors and ligands and metal sequestration time. Ordered arrays of copper nanocatalysts derived from depositing a monolayer of solution micelles exhibit excellent thermal stability and do not agglomerate during the thermal treatment at 850 °C, typical growth temperature for 1D nanomaterial using the chemical vapor deposition technique. High-density and aligned single-walled carbon nanotubes with uniform diameter have been synthesized using the chemical vapor deposition technique. The average diameter is 1.4 nm, which is on the same order of catalyst size, around 2.0 nm. The combination of tunable size and spacing with superb thermal stability and outstanding catalytic activity offered by this new copper nanocatalyst system will enable growth of high-yield 1D nanomaterials with controllable diameter and spacing consistently and reproducible properties. It also paves a new path to study the effect of nanocatalyst size on 1D nanomaterial synthesis and their properties. © 2010 American Chemical Society.
Type
Journal article
Permalink
https://hdl.handle.net/10161/4076
Published Version (Please cite this version)
10.1021/jp9099545
Publication Info
Liu, Y; Lor, C; Fu, Q; Pan, D; Lei, D; Liu, J; & Lu, J (2010). Synthesis of copper nanocatalysts with tunable size using diblock copolymer solution micelles. Journal of Physical Chemistry C, 114(13). pp. 5767-5772. 10.1021/jp9099545. Retrieved from https://hdl.handle.net/10161/4076.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Liu

Jie Liu

George Barth Geller Distinguished Professor of Chemistry
Dr. Liu’s research interests are focusing on the chemistry and material science of nanoscale materials. Specific topics in his current research program include: Self-assembly of nanostructures; Preparation and chemical functionalization of single walled carbon nanotubes; Developing carbon nanotube based chemical and biological sensors; SPM based fabrication and modification of functional nanostructures.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University