Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gold nanoparticles on polarizable surfaces as Raman scattering antennas.

Thumbnail
View / Download
4.4 Mb
Date
2010-11-23
Authors
Chen, Shiuan-Yeh
Mock, Jack J
Hill, Ryan T
Chilkoti, Ashutosh
Smith, David R
Lazarides, Anne A
Repository Usage Stats
380
views
756
downloads
Abstract
Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films. Dark-field scattering images display red shifting of the gold nanoparticle plasmon resonance and doughnut-shaped scattering patterns when particles are deposited on silicon or on a gold film. The imaged radiation patterns and individual particle spectra reveal that the polarizable substrates control both the orientation and brightness of the radiative modes. Comparison with simulation indicates that, in a particle-surface system with a fixed junction width, plasmon band shifts are controlled quantitatively by the permittivity of the wafer or the film. Surface-enhanced resonance Raman scattering (SERRS) spectra and images are collected from cyanine on particles on gold films. SERRS images of the particles on gold films are doughnut-shaped as are their Rayleigh images, indicating that the SERRS is controlled by the polarization of plasmons in the antenna nanostructures. Near-field enhancement and radiative efficiency of the antenna are sufficient to enable Raman scattering cyanines to function as gap field probes. Through collective interpretation of individual particle Rayleigh spectra and spectral simulations, the geometric basis for small observed variations in the wavelength and intensity of plasmon resonant scattering from individual antenna on the three surfaces is explained.
Type
Journal article
Subject
Carbocyanines
Electric Impedance
Gold
Metal Nanoparticles
Semiconductors
Silicon
Spectrum Analysis, Raman
Surface Properties
Permalink
https://hdl.handle.net/10161/4100
Published Version (Please cite this version)
10.1021/nn101644s
Publication Info
Chen, Shiuan-Yeh; Mock, Jack J; Hill, Ryan T; Chilkoti, Ashutosh; Smith, David R; & Lazarides, Anne A (2010). Gold nanoparticles on polarizable surfaces as Raman scattering antennas. ACS Nano, 4(11). pp. 6535-6546. 10.1021/nn101644s. Retrieved from https://hdl.handle.net/10161/4100.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Chilkoti

Ashutosh Chilkoti

Alan L. Kaganov Distinguished Professor of Biomedical Engineering
Ashutosh Chilkoti is the Alan L. Kaganov Professor of Biomedical Engineering and Chair of the Department of Biomedical Engineering at Duke University. My research in biomolecular engineering and biointerface science focuses on the development of new molecular tools and technologies that borrow from molecular biology, protein engineering, polymer chemistry and surface science that we then exploit for the development of applications that span the range from bioseparations, plasmonic bio
Smith

David R. Smith

James B. Duke Distinguished Professor of Electrical and Computer Engineering
Dr. David R. Smith is currently the James B. Duke Professor of Electrical and Computer Engineering Department at Duke University. He is also Director of the Center for Metamaterials and Integrated Plasmonics at Duke and holds the positions of Adjunct Associate Professor in the Physics Department at the University of California, San Diego, and Visiting Professor of Physics at Imperial College, London. Dr. Smith received his Ph.D. in 1994 in Physics from the University of California, San D
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University