Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BMP signaling in the development of the mouse esophagus and forestomach.

Thumbnail
View / Download
5.2 Mb
Date
2010-12
Authors
Rodriguez, Pavel
Da Silva, Susana
Oxburgh, Leif
Wang, Fan
Hogan, Brigid LM
Que, Jianwen
Repository Usage Stats
349
views
406
downloads
Abstract
The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26(CAG-loxpstoploxp-caBmprIa)) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1a(flox/flox) embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach.
Type
Journal article
Subject
Animals
Bone Morphogenetic Protein Receptors
Bone Morphogenetic Protein Receptors, Type I
Bone Morphogenetic Proteins
Carrier Proteins
Epithelium
Esophagus
Gene Expression Regulation, Developmental
Hedgehog Proteins
Immunohistochemistry
In Situ Hybridization
Mice
Signal Transduction
Stomach
Permalink
https://hdl.handle.net/10161/4178
Published Version (Please cite this version)
10.1242/dev.056077
Publication Info
Rodriguez, Pavel; Da Silva, Susana; Oxburgh, Leif; Wang, Fan; Hogan, Brigid LM; & Que, Jianwen (2010). BMP signaling in the development of the mouse esophagus and forestomach. Development, 137(24). pp. 4171-4176. 10.1242/dev.056077. Retrieved from https://hdl.handle.net/10161/4178.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Hogan

Brigid L. M. Hogan

Research Professor of Cell Biology
1. Genetic regulation of embryo development using the mouse as a research model. 2. The role of genes and signaling pathways in directing and co-ordinating the development of the lung. 3. The identity and regulation of the different stem cells in the adult lung and their role in repair, fibrosis and cancer.
Wang

Fan Wang

Adjunct Professor in the Department of Neurobiology
My lab studies neural circuit basis of sensory perception. Specifically we are interested in determining neural circuits underlying (1) active touch sensation including tactile processing stream and motor control of touch sensors on the face; (2) pain sensation including both sensory-discriminative and affective aspects of pain; and (3) general anesthesia including the active pain-suppression process. We use a combination of genetic, viral, electrophysiology, and in vivo imaging (in f
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    LKB1 Loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT. 

    Kaufman, Jacob M; Amann, Joseph M; Park, Kyungho; Arasada, Rajeswara Rao; Li, Haotian; Shyr, Yu; Carbone, David P (Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2014-06)
    Inactivation of serine/threonine kinase 11 (STK11 or LKB1) is common in lung cancer, and understanding the pathways and phenotypes altered as a consequence will aid the development of targeted therapeutic strategies. Gene ...
  • Thumbnail

    Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. 

    Kuehn, MJ; Schekman, R; Ljungdahl, PO (J Cell Biol, 1996-11)
    In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the ...
  • Thumbnail

    G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein. 

    Touhara, K; Hawes, BE; van Biesen, T; Lefkowitz, RJ (Proc Natl Acad Sci U S A, 1995-09-26)
    The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University