Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crosstalk rejection in full-field optical coherence tomography using spatially incoherent illumination with a partially coherent source

Thumbnail
View / Download
407.7 Kb
Date
2010-05-03
Authors
Dhalla, Al-Hafeez
Migacz, Justin V
Izatt, Joseph A
Repository Usage Stats
270
views
424
downloads
Abstract
The recent advent of ultra high frame rate cameras gives rise to the possibility of constructing swept source full-field OCT systems with achievable volume rates approaching 10Hz and net A-scan rates approaching 10MHz. Unfortunately, when illuminated with partially coherent light, full-field OCT in turbid media suffers resolution and SNR degradation from coherent multiple scattering, a phenomenon commonly referred to as crosstalk. As a result, most FFOCT systems employ thermal sources, which provide spatially incoherent illumination to achieve crosstalk rejection. However, these thermal sources preclude the use of swept source lasers. In this work, we demonstrate the use of a carefully configured FFOCT system employing multimode fiber in the illumination arm to reduce the spatial coherence of a partially coherent source. By reducing the coherence area below the system resolution, the illumination becomes effectively spatially incoherent and crosstalk is largely rejected. We compare FFOCT images of a USAF test chart positioned beneath both transparent and turbid phantoms using both illumination schemes. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Type
Journal article
Permalink
https://hdl.handle.net/10161/4221
Published Version (Please cite this version)
10.1117/12.843391
Publication Info
Dhalla, Al-Hafeez; Migacz, Justin V; & Izatt, Joseph A (2010). Crosstalk rejection in full-field optical coherence tomography using spatially incoherent illumination with a partially coherent source. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 7554. pp. 2305-2307. 10.1117/12.843391. Retrieved from https://hdl.handle.net/10161/4221.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Dhalla

Al-Hafeez Z Dhalla

Assistant Research Professor in the Department of Biomedical Engineering
My research focuses on the application of optical technologies for non-invasive, high-resolution imaging of biological tissues.  In particular, our laboratory develops optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO), light detection and ranging (LiDAR) and other optical imaging technologies for applications in the diagnosis and treatment of disease, particularly diseases of the eye. My work focuses not only on the engineering and technical development of novel imagin
Izatt

Joseph A. Izatt

Michael J. Fitzpatrick Distinguished Professor of Engineering
My research centers on the development and application of cutting-edge optical technologies for non-invasive, high-resolution imaging and sensing in living biological tissues. Our laboratory is recognized for foundational contributions to optical coherence-based approaches for in vivo sub-surface microscopic tissue imaging, particularly optical coherence tomography (OCT) which has become a standard of care in ophthalmology and other clinical specialties. The technologies we employ includ
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University