Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome

Thumbnail
View / Download
7.0 Mb
Date
2010
Authors
Tremblay, Deanna C
Alexander, Graham
Moseley, Shawn
Chadwick, Brian P
Repository Usage Stats
771
views
238
downloads
Abstract
Background: Macrosatellites are some of the largest variable number tandem repeats in the human genome, but what role these unusual sequences perform is unknown. Their importance to human health is clearly demonstrated by the 4q35 macrosatellite D4Z4 that is associated with the onset of the muscle degenerative disease facioscapulohumeral muscular dystrophy. Nevertheless, many other macrosatellite arrays in the human genome remain poorly characterized. Results: Here we describe the organization, tandem repeat copy number variation, transmission stability and expression of four macrosatellite arrays in the human genome: the TAF11-Like array located on chromosomes 5p15.1, the SST1 arrays on 4q28.3 and 19q13.12, the PRR20 array located on chromosome 13q21.1, and the ZAV array at 9q32. All are polymorphic macrosatellite arrays that at least for TAF11-Like and SST1 show evidence of meiotic instability. With the exception of the SST1 array that is ubiquitously expressed, all are expressed at high levels in the testis and to a lesser extent in the brain. Conclusions: Our results extend the number of characterized macrosatellite arrays in the human genome and provide the foundation for formulation of hypotheses to begin assessing their functional role in the human genome.
Type
Other article
Subject
facioscapulohumeral muscular-dystrophy
repetitive dna-sequence
deubiquitinating enzyme
candidate gene
messenger-rna
x-chromosome
fshd
family
differentiation
protein
biotechnology & applied microbiology
genetics & heredity
Permalink
https://hdl.handle.net/10161/4349
Published Version (Please cite this version)
10.1186/1471-2164-11-632
Citation
Tremblay,Deanna C.;Alexander,Graham, Jr.;Moseley,Shawn;Chadwick,Brian P.. 2010. Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. Bmc Genomics 11( ): 632-632.
Collections
  • Scholarly Articles
More Info
Show full item record
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University