Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ordered structure of the transcription network inherited from the yeast whole-genome duplication

Thumbnail
View / Download
861.2 Kb
Date
2010
Authors
Fusco, Diana
Grassi, Luigi
Bassetti, Bruno
Caselle, Michele
Cosentino Lagomarsino, Marco
Repository Usage Stats
226
views
130
downloads
Abstract
Background: Gene duplication, a major evolutionary path to genomic innovation, can occur at the scale of an entire genome. One such "whole-genome duplication" (WGD) event among the Ascomycota fungi gave rise to genes with distinct biological properties compared to small-scale duplications. Results: We studied the evolution of transcriptional interactions of whole-genome duplicates, to understand how they are wired into the yeast regulatory system. Our work combines network analysis and modeling of the large-scale structure of the interactions stemming from the WGD. Conclusions: The results uncover the WGD as a major source for the evolution of a complex interconnected block of transcriptional pathways. The inheritance of interactions among WGD duplicates follows elementary "duplication subgraphs", relating ancestral interactions with newly formed ones. Duplication subgraphs are correlated with their neighbours and give rise to higher order circuits with two elementary properties: newly formed transcriptional pathways remain connected (paths are not broken), and are preferentially cross-connected with ancestral ones. The result is a coherent and connected "WGD-network", where duplication subgraphs are arranged in an astonishingly ordered configuration.
Type
Other article
Subject
saccharomyces-cerevisiae
regulatory network
evolution
consequences
aneuploidy
mathematical & computational biology
Permalink
https://hdl.handle.net/10161/4387
Published Version (Please cite this version)
10.1186/1752-0509-4-77
Citation
Fusco,Diana;Grassi,Luigi;Bassetti,Bruno;Caselle,Michele;Lagomarsino,Marco Cosentino. 2010. Ordered structure of the transcription network inherited from the yeast whole-genome duplication. Bmc Systems Biology 4( ): 77-77.
Collections
  • Scholarly Articles
More Info
Show full item record
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University