Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reliability of transcriptional cycles and the yeast cell-cycle oscillator.

Thumbnail
View / Download
418.7 Kb
Date
2010
Authors
Sevim, Volkan
Gong, Xinwei
Socolar, Joshua ES
Repository Usage Stats
222
views
230
downloads
Abstract
A recently published transcriptional oscillator associated with the yeast cell cycle provides clues and raises questions about the mechanisms underlying autonomous cyclic processes in cells. Unlike other biological and synthetic oscillatory networks in the literature, this one does not seem to rely on a constitutive signal or positive auto-regulation, but rather to operate through stable transmission of a pulse on a slow positive feedback loop that determines its period. We construct a continuous-time Boolean model of this network, which permits the modeling of noise through small fluctuations in the timing of events, and show that it can sustain stable oscillations. Analysis of simpler network models shows how a few building blocks can be arranged to provide stability against fluctuations. Our findings suggest that the transcriptional oscillator in yeast belongs to a new class of biological oscillators.
Type
Journal article
Permalink
https://hdl.handle.net/10161/4452
Published Version (Please cite this version)
10.1371/journal.pcbi.1000842
Publication Info
Sevim, Volkan; Gong, Xinwei; & Socolar, Joshua ES (2010). Reliability of transcriptional cycles and the yeast cell-cycle oscillator. PLoS computational biology, 6(7). pp. e1000842. 10.1371/journal.pcbi.1000842. Retrieved from https://hdl.handle.net/10161/4452.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Socolar

Joshua Socolar

Professor of Physics
Prof. Socolar is interested in collective behavior in condensed matter and dynamical systems. His current research interests include: Limit-periodic structures, quasicrystals, packing problems, and tiling theory; Self-assembly and phases of designed colloidal particles; Organization and dynamics of complex networks; Topological elasticity of mechanical lattices.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University