Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2.

Thumbnail
View / Download
596.2 Kb
Date
2008-02-06
Authors
Viengchareun, Say
Servel, Nathalie
Fève, Bruno
Freemark, Michael
Lombès, Marc
Binart, Nadine
Repository Usage Stats
290
views
193
downloads
Abstract
BACKGROUND: The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARgamma2, its coactivator PGC-1alpha, uncoupling protein 1 (UCP1) and the beta3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2. CONCLUSIONS: Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia.
Type
Journal article
Subject
Adaptation, Physiological
Adipocytes, Brown
Animals
Animals, Newborn
Cell Differentiation
Cold Temperature
Gene Expression Regulation
Insulin-Like Growth Factor II
Mice
Mice, Knockout
Phenotype
Receptors, Prolactin
Signal Transduction
Permalink
https://hdl.handle.net/10161/4483
Published Version (Please cite this version)
10.1371/journal.pone.0001535
Publication Info
Viengchareun, Say; Servel, Nathalie; Fève, Bruno; Freemark, Michael; Lombès, Marc; & Binart, Nadine (2008). Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2. PLoS One, 3(2). pp. e1535. 10.1371/journal.pone.0001535. Retrieved from https://hdl.handle.net/10161/4483.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Freemark

Michael Scott Freemark

Robert C. Atkins, M.D. and Veronica Atkins Distinguished Professor of Pediatrics, in the School of Medicine
The primary objective of my basic research has been to elucidate the roles of placental and fetal hormones in the regulation of maternal metabolism and fetal growth. My work has focused on the lactogenic hormones produced by the pituitary gland and placenta. To that end we used targeted knockout mice to explore the molecular mechanisms by which prolactin and placental lactogen regulate pancreatic beta cell mass and insulin production during pregnancy and postnatal life. I also have
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University