Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Slip-sliding away: Serial changes and homoplasy in repeat number in the Drosophila yakuba homolog of human cancer susceptibility gene BRCA2

View / Download
449.7 Kb
Date
2010
Authors
Bennett, Sarah M
Mercer, John M
Noor, Mohamed AF
Repository Usage Stats
256
views
1
downloads
Abstract
Several recent studies have examined the function and evolution of a Drosophila homolog to the human breast cancer susceptibility gene BRCA2, named dmbrca2. We previously identified what appeared to be a recent expansion in the RAD51-binding BRC-repeat array in the ancestor of Drosophila yakuba. In this study, we examine patterns of variation and evolution of the dmbrca2 BRC-repeat array within D. yakuba and its close relatives. We develop a model of how unequal crossing over may have produced the expanded form, but we also observe short repeat forms, typical of other species in the D. melanogaster group, segregating within D. yakuba and D. santomea. These short forms do not appear to be identical-by-descent, suggesting that the history of dmbrca2 in the D. melanogaster subgroup has involved repeat unit contractions resulting in homoplasious forms. We conclude that the evolutionary history of dmbrca2 in D. yakuba and perhaps in other Drosophila species may be more complicated than can be inferred from examination of the published single genome sequences per species. © 2010 Bennett et al.
Type
Journal article
Permalink
https://hdl.handle.net/10161/4545
Published Version (Please cite this version)
10.1371/journal.pone.0011006
Publication Info
Bennett, Sarah M; Mercer, John M; & Noor, Mohamed AF (2010). Slip-sliding away: Serial changes and homoplasy in repeat number in the Drosophila yakuba homolog of human cancer susceptibility gene BRCA2. PLoS ONE, 5(6). pp. e11006. 10.1371/journal.pone.0011006. Retrieved from https://hdl.handle.net/10161/4545.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Mercer

John M. Mercer

Professor of the Practice of Biology
Noor

Mohamed A. F. Noor

Professor of Biology
Research in my laboratory strives to understand what genetic changes contribute to the formation of new species, what maintains fitness-related variation in natural populations, and how the process of genetic recombination affects both species formation and molecular evolution. Our approaches combine classical genetic, molecular genetic, and genomic/ bioinformatic analyses, along with occasional forays into areas like animal behavior (in relation to speciation). I am also very interested in help
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University