Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel, non-apoptotic role for Scythe/BAT3: a functional switch between the pro- and anti-proliferative roles of p21 during the cell cycle.

Thumbnail
View / Download
3.0 Mb
Date
2012
Author
Yong, Sheila T.
Advisors
Wang, Xiao-Fan
Chikaraishi, Dona
MacAlpine, David
Kreuzer, Kenneth
Haase, Steve
Repository Usage Stats
383
views
366
downloads
Abstract
Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis, a form of programmed cell death, has been extensively studied. However, since the developmental defects observed in Bat3‐null mouse embryos cannot be explained solely by defects in apoptosis, I investigated whether BAT3 is also involved in regulating cell‐cycle progression. Using a stable‐inducible Bat3‐knockdown cellular system, I demonstrated that reduced BAT3 protein level causes a delay in both the G1/S transition and G2/M progression. Concurrent with these changes in cell‐cycle progression, I observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21. p21 is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Additionally, I observed that the p21 turnover rate was also reduced in Bat3‐knockdown cells released from G2/M synchronization. My findings indicate that in Bat3‐knockdown cells, p21 continues to be synthesized during cell‐cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent cell‐cycle delay. Finally, I showed that BAT3 co‐localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. My study reveals a novel, non‐apoptoticrole for BAT3 in cell‐cycle regulation. By maintaining low p21 protein level during G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 into S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation, an event that promotes G2/M progression. BAT3 modulates these pro‐ and anti‐proliferative roles of p21 at least in part by regulating the translocation of p21 between the cytoplasm and nucleus of the cells to ensure proper functioning and regulation of p21 in the appropriate intracellular compartments during different cell‐cycle phases.
Type
Dissertation
Department
Molecular Cancer Biology
Subject
Apoptosis
Blotting, Western
Bone Neoplasms
Cell Cycle
Cell Proliferation
Cyclin-Dependent Kinase Inhibitor p21
DNA Replication
Flow Cytometry
Fluorescent Antibody Technique
Humans
Molecular Chaperones
Osteosarcoma
Phosphorylation
RNA, Small Interfering
Tumor Cells, Cultured
Permalink
https://hdl.handle.net/10161/4958
Citation
Yong, Sheila T. (2012). A novel, non-apoptotic role for Scythe/BAT3: a functional switch between the pro- and anti-proliferative roles of p21 during the cell cycle. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/4958.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University