Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Search for New/Unknown Signals

Thumbnail
View / Download
56.7 Mb
Date
2011
Author
Chen, Yuming Morris
Advisor
Warren, Warren S
Repository Usage Stats
733
views
128
downloads
Abstract

This dissertation focuses on a very special topic in the field of Nuclear Magnetic Resonance (NMR) in solution: Intermolecular Multiple Quantum Coherences, or iMQCs, which can only be created by intermolecular dipolar couplings. Since the very beginnings of NMR, it has been known that dipolar couplings dominate the solid-state linewidth for spin-1/2 nuclei, but the effects are still not fully understood. The angular dependency (1-3cos2θij) and distant dependency (rij-3) of dipolar coupling led to an oversimplified conclusion that it can be ignored in an isotropic liquid. Thus, it was surprising when COSY Revamped by Asymmetric Z-gradient Echo Detection (CRAZED) was first introduced in the early `90s and showed strong iMQC signals. Since then, CRAZED has inspired a wide range of applications for iMQCs and led to two different but equivalent mathematical frameworks to describes these effects, which we call the conventional DDF theory.

However, several disagreements between the conventional DDF theory and experiments have grasped our attention recently. This dissertation will: first, demonstrate how conventional picture fails by two examples, Multi-axis CRAZED (MAXCRAZED) and Gradient-embedded COSY Experiment (GRACE); second, provide a corrected DDF theory; and, third, discuss what impact this correction will bring.

Intermolecular double quantum coherences (iDQCs) are very sensitive to the local anisotropy (10μm - 1mm) and can be used to create positive contrast highlighting superparamagnetic iron oxide nanoparticles (SPIONs). This dissertation will show the design and optimization of iDQC anisotropy by a series of phantom experiments. A set of numerical simulations will then be provided for a sub-voxel level explanation. We will also demonstrate how the newly corrected DDF theory can be quickly adapted to improve the iDQC anisotropy.

Finally, as a side product of this research, the mechanism of diacetyl hydration/dehydration as solved by NMR will be provided.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
Physical chemistry
Biomedical engineering
distant dipolar field
intermolecular multiple quantum coherences
magnetic resonance imaging
nuclear magnetic resonance
Permalink
https://hdl.handle.net/10161/4987
Citation
Chen, Yuming Morris (2011). The Search for New/Unknown Signals. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/4987.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University