Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Insights into Chlamydial Protease-Like Activity Factor (CPAF)

Thumbnail
View / Download
191.5 Mb
Date
2011
Author
Bednar, Maria Michelle
Advisor
McCafferty, Dewey G
Repository Usage Stats
619
views
199
downloads
Abstract

During infection of epithelial cells, the obligate intracellular pathogen Chlamydia trachomatis secretes the serine protease chlamydial protease-like activity factor (CPAF) into the host cytosol to regulate a range of host cellular processes through targeted proteolysis. Understanding the role of CPAF in pathogenesis is hampered because Chlamydia are not genetically tractable organisms. As such, chemical biology approaches were used to confirm CPAF function in vitro and in vivo, and to validate it as a virulence target. Here we report the development of assays, investigation of substrate specificity, and establishment of CPAF as a central virulence factor in chlamydial pathogenesis. A system for the expression and purification of CPAF was developed. An in vitro assay would allow for determination of kinetic parameters and aid in understanding the function of this protease. Two in vitro proteolysis assays, a discontinuous HPLC-based assay and a continuous fluorescence quenching assay, were developed for use in kinetic parameter determination and inhibitor discovery.

CPAF substrate specificity studies were conducted through the use of alanine scanning, proteomic identification of protease cleavage sites (PICS), and quantitative proteomics. Results from these studies showed that CPAF exhibited a preference for glycine, alanine, and serine in position P1, and valine in position P2' of peptide substrates.

Additionally, we designed and synthesized a zymogen-derived inhibitor peptide with nanomolar affinity that inhibited CPAF activity in vitro and in vivo. Using this, anti-CPAF peptide, we established CPAF as a virulence factor for chlamydial pathogenesis. Furthermore, CPAF inhibition resulted in degradation of the inclusion vacuole, exposing the bacteria and stimulating bacterial killing, thus CPAF inhibition created an antibacterial effect. CPAF inhibition also leads to the stimulation of innate immune defense activation, namely activation of caspase 1. In addition, CPAF was determined to be inhibited by the natural product salinosporamide A, a variant of omuralide, and the active form of the proteasome inhibitor lactacystin. Salinosporamide A and omuralide offer advantages over peptide therapeutics because of their intrinsic resistance to proteolytic degradation and improved oral bioavailability. Toward that end, progress toward CPAF inhibitor derivates from this natural product scaffold is also presented. Collectively this thesis lends support for CPAF as an antivirulence target for Chlamydia.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
Chlamydia
CPAF
Permalink
https://hdl.handle.net/10161/4996
Citation
Bednar, Maria Michelle (2011). Insights into Chlamydial Protease-Like Activity Factor (CPAF). Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/4996.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University