Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatial Spectrum Estimation with a Maneuverable Sensor Array in a Dynamic Environment

Thumbnail
View / Download
826.0 Kb
Date
2011
Author
Odom, Jonathan Lawrence
Advisor
Krolik, Jeffrey L
Repository Usage Stats
340
views
402
downloads
Abstract

Estimation of a time-varying field is essential for situational awareness in many subject areas. Adaptive processing often assumes both the field is stationary and the array is fixed for multiple observation windows. For passive sonar, highly dynamic scenarios such as high bearing rate sources or underwater maneuvers severely limit the utilization of multiple snapshots. Several models are considered for time-varying fields, and a broadband maximum-likelihood estimator is introduced that is solved with an expectation maximization algorithm using as few as one snapshot. The number of estimated parameters can be reduced for broadband data when information, such as shape, is known about the source temporal spectrum. Cramér-Rao bound analysis is used to understand the effects of temporal spectrum knowledge on broadband processing. An example is given for the flat spectrum case to compare with conventional processing. Another feature of dynamic environments is array motion. Since underwater arrays are often subject to motion, the estimate must consider arbitrary, dynamic array shapes. Platforms such as autonomous underwater vehicles provide mobility but constrain the number of sensors. Exploiting a maneuverable linear array with the new estimate allows for left-right or front-back disambiguation and suppression of spatial grating lobes. Multi-source simulations are used to demonstrate the ability of a short, maneuvering array to reduce array backlobes as well as operate in the spatial grating lobe region.

Type
Master's thesis
Department
Electrical and Computer Engineering
Subject
Electrical engineering
Robotics
array processing
sensor array
sonar
spectrum
Permalink
https://hdl.handle.net/10161/5045
Citation
Odom, Jonathan Lawrence (2011). Spatial Spectrum Estimation with a Maneuverable Sensor Array in a Dynamic Environment. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/5045.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University