Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional Traits Exert More Control on Root Carbon Exudation than Do Short-Term Light and Nitrogen Availability in Four Herbaceous Plant Species

Thumbnail
View / Download
1.9 Mb
Date
2011
Author
Thorsos, Eileen Roseanne
Advisors
Jackson, Robert B
Wright, Justin P.
Repository Usage Stats
375
views
371
downloads
Abstract

Root carbon exudation is a critical element of the soil carbon cycle, and how both environmental conditions and plant traits influence exudation remains uncertain. I studied relationships between environmental conditions, plant traits, and carbon exudation in four herbaceous plant species: <italic>Asclepias incarnata</italic>, <italic>Microstegium vimineum</italic>, <italic>Panicum virgatum</italic>, and <italic>Scirpus cyperinus</italic>. Mature individuals were given short-term factorial light and N treatments, and exudates were collected from 8-hour carbon-free hydroponic incubations. I measured size traits (biomass, leaf area, root length, and root volume), photosynthesis (leaf-level and whole-plant), and tissue N traits (root, stem, and leaf percent N and C:N ratio). Neither light nor N treatments affected exudation, while exudation varied with species and traits. Species alone substantially explained mass-specific exudation (estimated R2 = 0.38). Size strongly predicted both total and mass-specific exudation, interacting with species (estimated R2 = 0.52 and 0.48, respectively). Generally, larger individuals exuded more overall but less per unit mass, although larger <italic>M. vimineum</italic> plants exuded more per unit mass. Whole-plant photosynthetic rate was weakly related to total exudation (estimated R2 = 0.17), and tissue N concentration moderately predicted mass-specific exudation (estimated R2 = 0.23). Other researchers have found that high light and low nitrogen availability stimulate exudation; my results indicate that this relationship is not straightforward. Plant traits, however, significantly explained variation in exudation, including some variation across species, supporting trait-based analyses of plant species' effects on ecosystem processes.

Type
Master's thesis
Department
Ecology
Subject
Ecology
carbon exudation
functional traits
nitrogen
photosynthesis
Permalink
https://hdl.handle.net/10161/5066
Citation
Thorsos, Eileen Roseanne (2011). Functional Traits Exert More Control on Root Carbon Exudation than Do Short-Term Light and Nitrogen Availability in Four Herbaceous Plant Species. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/5066.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University