Complex k band diagrams of 3D metamaterial/photonic crystals.

Loading...
Thumbnail Image

Date

2011-09-26

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

303
views
792
downloads

Abstract

A finite element method (FEM) for solving a complex valued k(ω) vs. ω dispersion curve of a 3D metamaterial/photonic crystal system is presented. This 3D method is a generalization of a previously reported 2D eigenvalue method [Opt. Express 15, 9681 (2007)]. This method is particularly convenient for analyzing periodic systems containing dispersive (e.g., plasmonic) materials, for computing isofrequency surfaces in the k-space, and for calculating the decay length of the evanescent waves. Two specific examples are considered: a photonic crystal comprised of dielectric spheres and a plasmonic fishnet structure. Hybridization and avoided crossings between Mie resonances and propagating modes are numerically demonstrated. Negative index propagation of four electromagnetic modes distinguished by their symmetry is predicted for the plasmonic fishnets. By calculating the isofrequency contours, we also demonstrate that the fishnet structure is a hyperbolic medium.

Department

Description

Provenance

Citation


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.