Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards macroscopic optical invisibility devices: geometrical optics of complex materials

Thumbnail
View / Download
447.9 Kb
Date
2012-01-18
Authors
Urzhumov, YA
Smith, DR
Repository Usage Stats
437
views
445
downloads
Abstract
Recently, a path towards macroscopic, transparent optical cloaking devices that may conceal objects spanning millions of wavelengths has been proposed [1]. Such devices are designed using transformation optics (TO) [2,3]. In this paper, we offer further analysis and improvements to the concept using the method of geometrical optics extended to complex photonic media with an arbitrary dispersion relation. A technique for solving the highly nonlinear partial differential equation of the eikonal using the finite element method is presented. Aberra-tions caused by the non-quadratic part of the dispersion relation are demonstrated quantitatively in a numerical experiment. An analytical argument based on the scalability of the eikonal phase is presented, which points to-wards a solution that removes this type of aberration in each order of the k-perturbation theory, thus restoring the perfect cloaking solution.
Type
Journal article
Permalink
https://hdl.handle.net/10161/5075
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Urzhumov

Yaroslav A. Urzhumov

Adjunct Assistant Professor in the Department of Electrical and Computer Engineering
<!--[if gte mso 9]> <![endif]--> <!--[if gte mso 9]> <![endif]-->Dr. Urzhumov is Adjunct Assistant Professor of ECE at Duke University, and also a Technologist at the Metamaterials Commercialization Center of Intellectual Ventures. Previously a research faculty at Duke, he works on applied and theoretical aspects of metama
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University