Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controllable ultrabroadband slow light in a warm rubidium vapor

Thumbnail
View / Download
474.3 Kb
Date
2011-01-01
Authors
Zhang, R
Greenberg, JA
Fischer, MC
Gauthier, DJ
Repository Usage Stats
292
views
188
downloads
Abstract
We study ultrabroadband slow light in a warm rubidium vapor cell. By working between the D1 and D2 transitions, we find a several-nanometer window centered at 788:4nm in which the group index is highly uniform and the absorption is small (<1%). We demonstrate that we can control the group delay by varying the temperature of the cell, and we observe a tunable fractional delay of 18 for pulses as short as 250 fs (6:9nm bandwidth) with a fractional broadening of only 0.65 and a power leakage of 55%. We find that a simple theoretical model is in excellent agreement with the experimental results. Using this model, we discuss the impact of the pulse's spectral characteristics on the distortion it incurs during propagation through the vapor. © 2011 Optical Society of America.
Type
Journal article
Permalink
https://hdl.handle.net/10161/5105
Published Version (Please cite this version)
10.1364/JOSAB.28.002578
Publication Info
Zhang, R; Greenberg, JA; Fischer, MC; & Gauthier, DJ (2011). Controllable ultrabroadband slow light in a warm rubidium vapor. Journal of the Optical Society of America B: Optical Physics, 28(11). pp. 2578-2583. 10.1364/JOSAB.28.002578. Retrieved from https://hdl.handle.net/10161/5105.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Fischer

Martin Fischer

Research Professor in the Department of Chemistry
Dr. Fischer’s research focuses on exploring novel nonlinear optical contrast mechanisms for molecular imaging. Nonlinear optical microscopes can provide non-invasive, high-resolution, 3-dimensional images even in highly scattering environments such as biological tissue. Established contrast mechanisms, such as two-photon fluorescence or harmonic generation, can image a range of targets (such as autofluorescent markers or some connective tissue structure), but many of the most molecularly specif
Gauthier

Daniel J. Gauthier

Research Professor of Physics
Prof. Gauthier is interested in a broad range of topics in the fields of nonlinear and quantum optics, and nonlinear dynamical systems. In the area of optical physics, his group is studying the fundamental characteristics of highly nonlinear light-matter interactions at both the classical and quantum levels and is using this understanding to develop practical devices. At the quantum level, his group has three major efforts in the area of quantum communication and networking. I
Greenberg

Joel Alter Greenberg

Associate Research Professor in the Department of Electrical and Computer Engineering
Dr. Greenberg's research is in the area of computational imaging with a focus on physics-based modeling and system-level design from fundamental science through algorithm implementation.  His work spans the electromagnetic spectrum, with a focus on X-ray and visible imaging and detection systems for security and medical applications.  
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University