Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile‐drained Midwestern watershed

Thumbnail
View / Download
4.7 Mb
Date
2011-05-11
Authors
Guan, K
Thompson, SE
Harman, CJ
Basu, NB
Rao, PSC
Sivapalan, M
Packman, AI
Kalita, PK
Show More
(8 total)
Repository Usage Stats
285
views
742
downloads
Abstract
Conceptualizing catchments as physicochemical filters is an appealing way to link streamflow discharge and concentration time series to hydrological and biogeochemical processing in hillslopes and drainage networks. Making these links explicit is challenging in complex watersheds but may be possible in highly modified catchments where hydrological and biogeochemical processes are simplified. Linking hydrological and biogeochemical filtering in highly modified watersheds is appealing from a water quality perspective in order to identify the major controls on chemical export at different spatial and temporal scales. This study investigates filtering using a 10 year data set of hydrological and biogeochemical export from a small (<500 km2) agricultural watershed in Illinois, the Little Vermilion River (LVR) Watershed. A number of distinct scaling regimes were identified in the Fourier power spectrum of discharge and nitrate, phosphate, and atrazine concentrations. These scaling regimes were related to different runoff pathways and spatial scales throughout the catchment (surface drainage, tile drains, and channel flow in the river). Wavelet analysis indicated increased coupling between discharge and in‐stream concentrations at seasonal‐annual time scales. Using a multiresolution analysis, nitrate, phosphate, and atrazine loads exported at annual scales were found to exhibit near‐linear scaling with annual streamflow, suggesting that at these scales the export dynamics could be approximated as chemostatic responses. This behavior was pronounced for nitrate and less so for phosphate and atrazine. The analysis suggests that biogeochemical inputs built up legacy loads, leading to the emergence of chemostatic behavior at annual time scales, even at the relatively small scale of the LVR.
Type
Journal article
Permalink
https://hdl.handle.net/10161/5113
Published Version (Please cite this version)
10.1029/2010WR009997
Citation
Guan, K., S. E. Thompson, C. J. Harman, N. B. Basu, P. S. C. Rao, M. Sivapalan, A. I. Packman, and P. K. Kalita (2011), Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile‐drained Midwestern watershed, Water Resour. Res., 47, W00J02, doi:10.1029/2010WR009997.
Collections
  • Scholarly Articles
More Info
Show full item record
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University