Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MicroRNA Function in Cellular Stress Response

Thumbnail
View / Download
4.1 Mb
Date
2012
Author
Sangokoya, Carolyn Olufunmilayo
Advisor
Chi, Jen-Tsan Ashley
Repository Usage Stats
961
views
522
downloads
Abstract

MicroRNAs are key post-transcriptional regulators that have been found to play critical roles in the regulation of cellular functions. There is an emerging concept that microRNAs may be just as essential for fine-tuning physiological functions and responding to changing environments and stress conditions as for viability or development. In this dissertation, two studies are presented: The first study demonstrates a role for microRNA in the regulation of oxidative stress response in erythroid cells and the functional consequences of dysregulated microRNA expression in Sickle Cell Disease (SCD) pathobiology. The second study examines a functional role for microRNA in the cellular response to changes in cellular iron concentration. Together these studies illustrate the scope of importance of microRNAs in the coordination of cellular responses to diverse stresses.

Homozygous Sickle Cell (HbSS) erythrocytes are known to have reduced tolerance for oxidative stress, yet the basis for this phenotype has remained unknown. Here we use erythrocyte microRNA expression profiles to identify a subset of HbSS patients with higher miR-144 expression and more severe anemia. We reveal that in K562 erythroid cells and primary erythroid progenitor cells, miR-144 directly regulates NRF2, a central regulator of cellular response to oxidative stress, and modulates the oxidative stress response. We further demonstrate that increased miR-144 is associated with the reduced NRF2 levels, decreased glutathione regeneration, and attenuated antioxidant capacity found in HbSS erythroid progenitors, thereby providing a mechanism for the reduced oxidative stress tolerance and increased anemia severity seen in HbSS patients.

The post-transcriptional regulation of the IRP2 regulon in the cellular response to iron deficiency is well characterized. Here we examine the potential role for microRNA-mediated regulation in the coordinated response to cellular iron deficiency.

Type
Dissertation
Department
Genetics and Genomics
Subject
Molecular biology
Genetics
Cellular biology
antioxidant
iron
microRNA
miRNA
post-transcriptional regulation
stress
Permalink
https://hdl.handle.net/10161/5393
Citation
Sangokoya, Carolyn Olufunmilayo (2012). MicroRNA Function in Cellular Stress Response. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5393.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University