Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Murine Model of Thymic Damage and Recovery Following Sublethal Ionizing Radiation

Thumbnail
View / Download
2.3 Mb
Date
2012
Author
Kepuska, Zana
Advisor
Sempowski, Gregory D
Repository Usage Stats
498
views
695
downloads
Abstract

The thymus is the primary lymphoid organ responsible for generation of functional T lymphocytes. The loss of thymic function, either as a consequence of physiological senescence or the result of disease- and/or treatment-related pathology, affects individual¡¯s capacity to maintain a broad T cell antigen receptor repertoire. In consequence, the ability to mount an efficient adaptive immune response may become restricted. Currently, there are no available treatments to protect against acute thymic involution, and little is known about the mechanisms that drive thymic involution and recovery. The induction of thymic involution and the delay in thymus recovery emphasize the need to identify the mechanisms that drive stress-induced acute thymic involution, and the need to develop therapeutics to block involution and/or enhance thymus recovery during acute stress events. While many studies have characterized poor immune recovery due to high/lethal doses of radiation, the overall response of the immune system after exposure to a sublethal dose of radiation is unclear. The goal of this research was to develop a murine model of acute thymic involution induced by sublethal irradiation where damage and recovery effects induced by radiation could be examined.

We present here our two-phase irradiation-induced (¡Ü 125 cGy, 250 cGy and 550 cGy) thymic involution model in young BALB/c mice. We observed a dramatic dose-dependent impact of irradiation on thymopoiesis on day 7. By day 35 there was spontaneous recovery of thymus, and restoration of the peripheral lymphoid compartments. Thymus function was monitored by thymus weight, cellularity, and TCR gene re-arrangement (mTREC). During the damage phase our studies demonstrated decreased expression of thymostimulatory cytokine, KGF, and loss of active TCR gene rearrangement following radiation exposure in young mice. An increase of KGF levels correlated with the overall spontaneous recovery observed. Thus, suggesting a critical role of thymic-stromal derived KGF in promoting stroma/thymocyte crosstalk to mediate thymus recovery.

Overall, our characterization of our model provided a useful estimate of thymic response to stress induced by irradiation and our findings may provide a model to a better future understanding of mechanisms involved in thymus recovery from damage and inform development of strategies to restore thymic function in the stressed-induced acute thymic involution.

Type
Master's thesis
Department
Pathology
Subject
Immunology
Permalink
https://hdl.handle.net/10161/5434
Citation
Kepuska, Zana (2012). Murine Model of Thymic Damage and Recovery Following Sublethal Ionizing Radiation. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/5434.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University