A High-Throughput Framework for Materials Research And Space Group Determination Algorithm
Effective computational materials search, categorization, and design necessitates a high-throughput (HT) approach. System by system analyses lack the scope and speed needed to uncover large portions of the materials landscape. By performing broad searches over structural or chemical classes of materials and guided by fundamental physical principles, materials with specific desired properties can be systematically found. Furthermore, the HT approach is an effective general tool for materials classification. Depending on the application, various properties can be computed leading to powerful classification schemes. To implement HT materials studies, however, a versatile and robust framework must first be developed. In this paper, the HT framework AFLOW that has been developed and used successfully over the last decade is presented. Specifically, attention is given to an origin-specific symmetry algorithm. The algorithm is designed to determine the relevant symmetry properties of an arbitrary crystal structure (e.g., point group, space group, etc.).

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Masters Theses
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info