Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calcium Sulfate Precipitation in Biotrickling Filters Treating Hydrogen Sulfide

Thumbnail
View / Download
6.1 Mb
Date
2012
Author
Loughery, Scott
Advisor
Deshusses, Marc A
Repository Usage Stats
765
views
1,535
downloads
Abstract

Hydrogen sulfide (H2S) is a toxic gas and common odor nuisance produced in a variety of chemical and environmental processes. The biological oxidation of H2S to sulfate/sulfuric acid is a well-documented treatment method that is efficient both in removal and cost. Sulfate ions produced in a BTF can interact with various cations, specifically calcium, and form insoluble salts. Gypsum (CaSO4*2H2O) formed within a BTF treating H2S can affect system performance by causing pressure buildup and reducing pollutant mass transfer. An experimental approach was developed to quantify gypsum precipitation in BTFs as a function of critical system parameters. Effluent liquid from one laboratory and four industrial BTFs was used to induce gypsum precipitation at various levels of pH, total sulfate concentration, calcium content, and ionic strength. A computer model was developed to predict gypsum precipitation based on the ionic composition of the reactor trickling liquid. The results support the hypothesis that gypsum precipitation in a BTF treating H2S is a realistic concern for industrial systems. The computer model demonstrates the ability to successfully predict gypsum precipitation within a correction factor of 2. The presence of gypsum and elemental sulfur in solid samples collected from industrial BTFs illustrates the feasibility of mineral deposition in full-scale treatment systems. Ethylene diamine tetraacetic acid (EDTA) shows the potential of being an effective additive for the prevention of gypsum formation within a BTF treating hydrogen sulfide.

Type
Master's thesis
Department
Civil and Environmental Engineering
Subject
Environmental engineering
Biofiltration
DLS
Gypsum
Hydrogen Sulfide
Permalink
https://hdl.handle.net/10161/5521
Citation
Loughery, Scott (2012). Calcium Sulfate Precipitation in Biotrickling Filters Treating Hydrogen Sulfide. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/5521.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University