Spatial Bayesian Variable Selection with Application to Functional Magnetic Resonance Imaging (fMRI)
Functional magnetic resonance imaging (fMRI) is a major neuroimaging methodology and have greatly facilitate basic cognitive neuroscience research. However, there are multiple statistical challenges in the analysis of fMRI data, including, dimension reduction, multiple testing and inter-dependence of the MRI responses. In this thesis, a spatial Bayesian variable selection (BVS) model is proposed for the analysis of multi-subject fMRI data. The BVS framework simultaneously account for uncertainty in model specific parameters as well as the model selection process, solving the multiple testing problem. A spatial prior incorporate the spatial relationship of the MRI response, accounting for their inter-dependence. Compared to the non-spatial BVS model, the spatial BVS model enhances the sensitivity and accuracy of identifying activated voxels.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Masters Theses
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info