Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gene level analysis of Endothelial Progenitor Cells in Co-culture

Thumbnail
View / Download
4.5 Mb
Date
2011
Author
Aravind, Aswati
Advisor
Truskey, George A
Repository Usage Stats
402
views
1,209
downloads
Abstract

hCB-ECs show varying morphology under co-culture conditions. They are known to form networks when co-cultured on matrices like Matrigel, collagen gels and SMCs. Optimizing the co-culture model for the formation of networks can enable better understanding of angiogenesis and can aid in the area of tissue engineered organs while creating a model with no networks can help in producing a smooth layer of cells for tissue engineered blood vessels. Additionally, the study of networks on smooth muscle cell surfaces gives a better approach to understanding the in vivo phenomena.

The main goal of this study was to identify conditions that would support the formation of networks and to study the gene level alterations in the hCB-EC cells between co-culture and monoculture during the formation and absence of networks. To study the morphological changes co-cultures were setup by varying the hCB-EC densities at 26,316 cells/cm2, 52,632 cells/cm2, 80,000 cells/cm2 and 105,263 cells/cm2 on SMCs. Lower seeding densities of hCB-ECs led to network formations while a confluent layer was observed at the highest density. Medium components were altered to identify factors which contributed to network formation and it was found that absence of VEGF led to delayed cell migration and network formation while absence of heparin produced sparser networks in co-culture. Microarray analysis using four different hCB-EC sources plated at the highest and lowest densities resulted in higher expression of ECM remodeling and endothelial cell migration genes consistent to the low density conditions were networks were abundant while high density conditions expressed downregulation of cell cycle associated genes.

Type
Master's thesis
Department
Biomedical Engineering
Subject
Biomedical Engineering
capillary formations
endothelial cells co-culture
gene expression
microarray
smooth muscle cells
Permalink
https://hdl.handle.net/10161/5623
Citation
Aravind, Aswati (2011). Gene level analysis of Endothelial Progenitor Cells in Co-culture. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/5623.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University