Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applications of Photoemission Electron Microscopy to Melanin and Melanosomes

Thumbnail
View / Download
8.1 Mb
Date
2011
Author
Peles, Dana Nicole
Advisor
Simon, John D
Repository Usage Stats
971
views
3,027
downloads
Abstract

Melanin is a biological pigment that is ubiquitous in nature and generally produced within melanosomes, specialized organelles. Typically, melanin is categorized into two distinct classes, based on color and molecular precursor: eumelanin (brown-black) and pheomelanin (yellow-red). Whereas much is known regarding the molecular precursors to the two pigments, an understanding of their resulting molecular structure remains elusive. Despite this lack of knowledge, several functions are attributed to the pigments, including photoprotection and photosensitization. Epidemiological data for skin and ocular cancers have observed an increased incidence for increased relative concentrations of pheomelanin. Furthermore, eumelanin is generally identified as photoprotective and antioxidant, whereas pheomelanin is generally identified as photoreactive and pro-oxidant. This thesis describes the photophysical properties of the naturally-occuring melanin pigments and presents new insights into their roles within the context of skin and ocular cancers.

Photoemission electron microscopy provides a unique opportunity to probe the complex photoproperties of melanins contained within intact melanosomes isolated from tissues of bovine and human eyes. Photoionization threshold potentials characteristic of eumelanin and pheomelanin have been determined and are used to investigate the molecular architecture of the pigments within the melanosome. Furthermore, a novel approach to photoemission electron microscopy is used to obtain the first direct measurements of the absorption coefficients from intact melanosomes.

Human iridal stroma melanosomes are comprised of both eumelanin and pheomelanin in various ratios according to iris color; dark brown and blue-green iris melanosomes are characterized by a eumelanin:pheomelanin ratio of 14.8 and 1.3, respectively. Despite the significant difference in the overall pigment composition, a common eumelanin surface photoionization threshold is obtained for both melanosomes. This data indicates that within the melanosome, the phototoxic pheomelanin pigment is encased by eumelanin. This structure mitigates the adverse photochemical properties of pheomelanin. However, damage to the eumelanic exterior and or significant reduction in the amount of eumelanin present could compromise the protective ability of eumelanin, providing mechanisms for exposure of pheomelanin and consequently contributing to oxidative stress.

The absorption spectra of intact melanosomes of varying melanin compositions were determined over the spectral range from 244 to 310 nm. The absorption spectra of eumelanic melanosomes are similar regardless of monomer composition or embryonic origin. Furthermore, the absorption spectra of melanosomes containing a mixture of pigments were similar to those containing pure eumelanin, arguing that the absorption properties of the melanosome are maintained regardless of increased pheomelanin composition. Therefore, the correlation between epidemiological data and the eumelanin:pheomelanin ratio is not predicted to be a reflection of the melanosome's decreased ability to attenuate biologically relevant wavelengths, but instead is predicted to be a reflection of the different photoreactivities of the melanin pigments contained within.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
Biophysics
Eumelanin
Melanin
Melanosomes
Pheomelanin
Photoemission Electron Microscopy
Permalink
https://hdl.handle.net/10161/5670
Citation
Peles, Dana Nicole (2011). Applications of Photoemission Electron Microscopy to Melanin and Melanosomes. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5670.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University