Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and Implementation of Bayesian Computer Model Emulators

Thumbnail
View / Download
3.7 Mb
Date
2011
Author
Lopes, Danilo Lourenco
Advisors
Wolpert, Robert L
Berger, James O
Repository Usage Stats
408
views
210
downloads
Abstract

Our interest is the risk assessment of rare natural hazards, such as

large volcanic pyroclastic flows. Since catastrophic consequences of

volcanic flows are rare events, our analysis benefits from the use of

a computer model to provide information about these events under

natural conditions that may not have been observed in reality.

A common problem in the analysis of computer experiments, however, is the high computational cost associated with each simulation of a complex physical process. We tackle this problem by using a statistical approximation (emulator) to predict the output of this computer model at untried values of inputs. Gaussian process response surface is a technique commonly used in these applications, because it is fast and easy to use in the analysis.

We explore several aspects of the implementation of Gaussian process emulators in a Bayesian context. First, we propose an improvement for the implementation of the plug-in approach to Gaussian processes. Next, we also evaluate the performance of a spatial model for large data sets in the context of computer experiments.

Computer model data can also be combined to field observations in order to calibrate the emulator and obtain statistical approximations to the computer model that are closer to reality. We present an application where we learn the joint distribution of inputs from field data and then bind this auxiliary information to the emulator in a calibration process.

One of the outputs of our computer model is a surface of maximum volcanic flow height over some geographical area. We show how the topography of the volcano area plays an important role in determining the shape of this surface, and we propose methods

to incorporate geophysical information in the multivariate analysis of computer model output.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Computer Engineering
Geology
Calibration
Computer model
Emulator
Gaussian process
Pyroclastic flow
Uncertainty analysis
Permalink
https://hdl.handle.net/10161/5718
Citation
Lopes, Danilo Lourenco (2011). Development and Implementation of Bayesian Computer Model Emulators. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5718.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University