Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From Population to Single Cells: Deconvolution of Cell-cycle Dynamics

Thumbnail
View / Download
6.8 Mb
Date
2012
Author
Guo, Xin
Advisor
Hartemink, Alexander J
Repository Usage Stats
375
views
378
downloads
Abstract

The cell cycle is one of the fundamental processes in all living organisms, and all cells arise from the division of existing cells. To better understand the regulation of the cell cycle, synchrony experiments are widely used to monitor cellular dynamics during this process. In such experiments, a large population of cells is generally arrested or selected at one stage of the cycle, and then released to progress through subsequent division stages. Measurements are then taken in this population at a variety of time points after release to provide insight into the dynamics of the cell cycle. However, due to cell-to-cell variability and asymmetric cell division, cells in a synchronized population lose synchrony over time. As a result, the time-series measurements from the synchronized cell populations do not accurately reflect the underlying dynamics of cell-cycle processes.

In this thesis, we introduce a deconvolution algorithm that learns a more accurate view of cell-cycle dynamics, free from the convolution effects associated with imperfect cell synchronization. Through wavelet-basis regularization, our method sharpens signal without sharpening noise, and can remarkably increase both the dynamic range and the temporal resolution of time-series data. Though it can be applied to any such data, we demonstrate the utility of our method by applying it to a recent cell-cycle transcription time course in the eukaryote <italic>Saccharomyces cerevisiae</italic>. We show that our method more sensitively detects cell-cycle-regulated transcription, and reveals subtle timing differences that are masked in the original population measurements. Our algorithm also explicitly learns distinct transcription programs for both mother and daughter cells, enabling us to identify 82 genes transcribed almost entirely in the early G1 in a daughter-specific manner.

In addition to the cell-cycle deconvolution algorithm, we introduce <italic>DOMAIN</italic>, a protein-protein interaction (PPI) network alignment method, which employs a novel <italic>direct-edge-alignment</italic> paradigm to detect conserved functional modules (e.g., protein complexes, molecular pathways) from pairwise PPI networks. By applying our approach to detect protein complexes conserved in yeast-fly and yeast-worm PPI networks, we show that our approach outperforms two widely used approaches in most alignment performance metrics. We also show that our approach enables us to identify conserved cell-cycle-related functional modules across yeast-fly PPI networks.

Type
Dissertation
Department
Computer Science
Subject
Bioinformatics
Computer science
cell cycle
deconvolution
intrinsically disordered regions
protein-protein interaction
transcriptional program
Permalink
https://hdl.handle.net/10161/5764
Citation
Guo, Xin (2012). From Population to Single Cells: Deconvolution of Cell-cycle Dynamics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5764.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University