Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model Studies of Proposed Intermediates in Homogeneous Gold(I) Catalysis

Thumbnail
View / Download
9.7 Mb
Date
2012
Author
Brown, Timothy Justin
Advisor
Widenhoefer, Ross A
Repository Usage Stats
357
views
154
downloads
Abstract

The ability of gold(I) complexes to function as catalysts for myriad organic transformations has led to a dramatic increase in their utilization. Among the homogeneous reactions catalyzed by gold(I), carbon-carbon and carbon-heteroatom bond forming processes are of particular interest for the fields of organic synthesis and pharmaceutical development. Discussed herein are gold(I)-catalyzed methods for the intra- and intermolecular functionalization of alkenes, alkynes, and allenes with nitrogen- and oxygen-based nucleophiles leading to new C‒X bonds (X = N, O).

Approximately 26 cationic gold π-alkene complexes, containing either IPr [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene] or P(t-Bu)2o-biphenyl ancillary ligands, were isolated or generated and six complexes were analyzed by X-ray crystallography. Spectroscopy, X-ray crystallography, and alkene binding studies are in accord with a gold−(π-alkene) interaction dominated by σ-donation from the alkene to gold. Kinetic analyses of degenerate isobutylene exchange in both the IPr and phosphine systems are consistent with associative pathways for isobutylene exchange involving cationic bis(alkene) intermediates.

Reaction of a 1:1 mixture of (L)AuCl [L = P(t-Bu)2o-biphenyl or IPr] and AgSbF6 with internal alkynes led to isolation of the corresponding cationic, two-coordinate gold &pi;-alkyne complexes in &#8805;90% yield. Equilibrium binding studies show that the binding affinities of alkynes to gold(I) are strongly affected by the electron density of the alkyne and to a lesser extent on the steric bulk of the alkyne. Treatment of a suspension of (IPr)AuCl and AgSbF6 with terminal arylacetylenes led to the formation of thermally unstable gold &pi;-alkyne complexes of the form [(IPr)Au(eta<super>2</super>-HC&#8801;CAr)] SbF6 in &#8805;86 ± 5% yield, which were characterized by spectroscopy without isolation. Warming these complexes to 0 °C led to C(sp)-H bond cleavage and formation of dinuclear gold(I) &sigma;,&pi;-acetylide complexes of the form {[(IPr)Au]2(eta<super>1</super>,eta<super>2</super>-C&#8801;CAr)} SbF6, three of which were isolated in 99% yield and one of which was characterized by X-ray crystallography.

A family of 7 cationic gold(I) &pi;-allene complexes were isolated and fully characterized in solution, and in three cases by X-ray crystallography. Degenerate intermolecular allene exchange kinetic studies for three of the allene complexes are in accord with a two-term rate law of the form rate = k1[complex] + k2[complex][allene] with with Gibb's free energy barriers of 17.4 - 18.8 kcal mol<super>-1</super> (1) and 15.2 - 17.6 kcal mol<super>-1</super> (2). Variable temperature NMR analysis of these complexes established facile intramolecular &#61552;-face exchange through &#61544;1-allene intermediates or transition states with barriers of 8.9 - 10.9 kcal mol<super>-1</super> for phosphine and 9.5 - 12.2 kcal mol<super>-1</super> for IPr complexes.

Mechanistic investigation of gold(I)-catalyzed intramolecular allene hydroalkoxylation established a mechanism involving rapid and reversible C-O bond formation followed by turnover-limiting protodeauration from a mono(gold) vinyl complex. This on-cycle pathway competes with catalyst aggregation and formation of an off-cycle bis(gold) vinyl complex.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
Organic chemistry
Inorganic chemistry
bis(gold) complexes
gold
kinetics
mechanism
pi-complexes
Permalink
https://hdl.handle.net/10161/5802
Citation
Brown, Timothy Justin (2012). Model Studies of Proposed Intermediates in Homogeneous Gold(I) Catalysis. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5802.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University