Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Post-Buckled Stability and Modal Behavior of Plates and Shells

Thumbnail
View / Download
9.7 Mb
Date
2012
Author
Lyman, Theodore Clarence
Advisor
Virgin, Lawrence N
Repository Usage Stats
356
views
1,658
downloads
Abstract

In modern engineering there is a considerable interest in predicting the behavior of post-buckled structures. With current lightweight, aerospace, and high performance applications, structural elements frequently operate beyond their buckled load. This is especially true of plates, which are capable of maintaining stability at loads several times their critical buckling load. Additionally, even structures such as cylindrical shells may be pushed into a post-buckled range in these extreme applications.

Because of the nature of these problems, continuation methods are particularly well suited as a solution method. Continuation methods have been extensively applied to a range of problems in mathematics and physics but have been used to a lesser extent in engineering problems. In the present work, continuation methods are used to solve a variety of buckling and stability problems of discrete dynamical systems, plates and cylinders. The continuation methods, when applied to dynamic mechanical systems, also provide very useful information regarding the modal behavior of the structure, including linearized natural frequencies and mode shapes as a by-product of the solution method.

To verify the results of the continuation calculations, the commercial finite element code ANSYS is used as an independent check. To confirm previously unseen stable equilibrium shapes for square plates, a set of experiments on polycarbonate plates is also presented.

Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Mechanical engineering
Buckling
Continuation
Cylinder
Plate
Stability
Vibration
Permalink
https://hdl.handle.net/10161/5803
Citation
Lyman, Theodore Clarence (2012). Post-Buckled Stability and Modal Behavior of Plates and Shells. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5803.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University