Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of Gene-by-Age Interaction and Gene-by-Gene Interaction In Coronary Artery Disease

Thumbnail
View / Download
4.7 Mb
Date
2012
Author
Zhao, Yi
Advisor
Hauser, Elizabeth
Repository Usage Stats
1,187
views
416
downloads
Abstract

The success of genome-wide association studies (GWAS) has been limited by missing heritability and lack of biological relevance of identified variants. We sought to address these issues by characterizing interaction among genotypes and environment using case-control samples enrolled at Duke University Medical Center. First, we studied the impact of age on coronary artery disease (CAD). Gene-by-age (GxAGE) interactions were tested at genome-wide scale, along with genes' marginal effects in age-stratified groups. Based on the interaction model, age plays the role as a modifier of the age-CAD relationship. SNPs associated with CAD in both young and old demonstrate consistency in effect sizes and directions. In spite of these SNPs, vastly different CAD associated genes were discovered across age and race groups, suggesting age-dependent mechanisms of CAD onset. Second, we explored gene-by-gene interaction (GxG) using a statistical model and compared results to biological evidence. Specifically, we investigated GATA2 as a candidate gene transcription factor, and modeled the interaction with genome-wide SNPs. The genetic effects at interacting loci were modified by GATA2 genotype. Without taking GATA2 variants into account , no marginal main effects were detected. Open access ChIP-seq data was available for comparison with the statistical model, and to relate GWAS findings with biological mechanisms. The agreement between the statistical and biological models was very limited.

Type
Dissertation
Department
Computational Biology and Bioinformatics
Subject
Bioinformatics
Permalink
https://hdl.handle.net/10161/5816
Citation
Zhao, Yi (2012). Characterization of Gene-by-Age Interaction and Gene-by-Gene Interaction In Coronary Artery Disease. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5816.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University