Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topoisomerase III-alpha in Double Holliday Junction Dissolution

Thumbnail
View / Download
2.2 Mb
Date
2012
Author
Chen, Stefanie Lynn Hartman
Advisor
Hsieh, Tao-shih
Repository Usage Stats
303
views
206
downloads
Abstract

Topoisomerase III&alpha; (Top3&alpha;) is an essential component of the double Holliday junction (dHJ) dissolvasome complex in metazoans. Previous work has shown that Top3&alpha; and Bloom's helicase (Blm) are able to convergently migrate the dHJ to create solely non-crossover products, thus preserving genomic integrity. However, many questions remain about the details of this process. Using a combination of biochemical and genetic tools, including dHJ substrate assays, gel electrophoresis, EMSA, pulldowns, fly crosses, and electron microscopy, this work expands our knowledge of the dissolution reaction. Tail mutants of Top3&alpha; were created and tested in a series of <italic>in vitro</italic> assays. Through these experiments, I discovered that the C-terminus of Top3&alpha; is important for binding Blm, interacting with DNA, conveying RPA stimulation, and <italic>in vivo</italic> functionality. I also observed that dissolution is an extremely processive reaction, with no accumulation of intermediates prior to product formation. When a non-specific topoisomerase was used (Top1, a type IB), accumulation of an intermediate was evident; however, contrary to predicted models, direct observation revealed that this intermediate is not a hemicatenane structure and still requires branch migration. Modifications were also made to the dHJ substrate creation method so that multiple types of HJ substrates could be produced efficiently.

Type
Dissertation
Department
Biochemistry
Subject
Biochemistry
helicase
Holliday junction
homologous recombination
topoisomerase
Permalink
https://hdl.handle.net/10161/5823
Citation
Chen, Stefanie Lynn Hartman (2012). Topoisomerase III-alpha in Double Holliday Junction Dissolution. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5823.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University