Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular Mechanisms of Sensory Neuron Dendrite Remodeling

Thumbnail
View / Download
152.7 Mb
Date
2012
Author
Lyons, Gray R
Advisor
Kuo, Chay
Repository Usage Stats
393
views
123
downloads
Abstract

Dendrites are the primary sites of information input into neurons. Proper establishment and maintenance of dendritic structure is essential for the function of neural circuits. In response to certain stimuli, the shape of dendritic arbors may be refined and remodeled. Despite the importance of dendrite structural plasticity in health and disease, the molecular mechanisms governing this process are not well understood. One genetically tractable platform to study context-dependent remodeling is the Drosophila peripheral nervous system. A subset of sensory neurons, the class IV dendritic arborizing neurons, has been shown to prune and regrow dendrites during metamorphosis. My research has focused on the mechanism through which these neurons regenerate a morphologically distinct dendritic structure. A forward genetic protein trap screen was conducted to identify genes differentially expressed during metamorphosis compared to larval stages. I identified Cysteine proteinase-1 as a gene upregulated in class IV neurons during dendrite regeneration under control of ecdysone hormone. Neurons carrying mutations of Cysteine proteinase-1 were unable to target and elaborate secondary dendritic arbors, resulting in disrupted morphology. These data were found to phenocopy dendrite regeneration defects in neurons lacking the homeobox transcription factor cut. Furthermore, I present evidence that Cysteine proteinase-1 can regulate a truncated cut isoform with altered function. This research presents a novel insight into the molecular mechanisms of sensory neuron dendrite remodeling. New directions arising from this study include potential conservation of this mechanism across species, downstream effectors of identified genes, and characterization of other systems subject to context-dependent dendrite regeneration. Elucidating the processes regulating dendrite remodeling will provide useful insight into nervous system function in health and disease.

Type
Dissertation
Department
Cell Biology
Subject
Cellular biology
Neurosciences
Permalink
https://hdl.handle.net/10161/5842
Citation
Lyons, Gray R (2012). Molecular Mechanisms of Sensory Neuron Dendrite Remodeling. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5842.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University