Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure.

Thumbnail
View / Download
528.4 Kb
Date
2005-02-08
Authors
Tachibana, Hideo
Naga Prasad, Sathyamangla V
Lefkowitz, Robert J
Koch, Walter J
Rockman, Howard A
Repository Usage Stats
263
views
1,019
downloads
Abstract
BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.
Type
Journal article
Subject
Adenylyl Cyclases
Animals
Cardiac Output, Low
Constriction
Cyclic AMP-Dependent Protein Kinases
Heart
Mice
Mice, Transgenic
Myocardium
Peptides
Pressure
Recombinant Proteins
Signal Transduction
Ultrasonography
beta-Adrenergic Receptor Kinases
Permalink
https://hdl.handle.net/10161/5908
Published Version (Please cite this version)
10.1161/01.CIR.0000142291.70954.DF
Publication Info
Tachibana, Hideo; Naga Prasad, Sathyamangla V; Lefkowitz, Robert J; Koch, Walter J; & Rockman, Howard A (2005). Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation, 111(5). pp. 591-597. 10.1161/01.CIR.0000142291.70954.DF. Retrieved from https://hdl.handle.net/10161/5908.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lefkowitz

Robert J. Lefkowitz

The Chancellor's Distinguished Professor of Medicine
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win. Robert J. Lefkowitz, M.D. is James B. Duke Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the
Rockman

Howard Allan Rockman

Edward S. Orgain Distinguished Professor of Cardiology, in the School of Medicine
Rockman Lab: Molecular Mechanisms of Hypertrophy and Heart Failure Overall Research Direction: The major focus of this laboratory is to understand the molecular mechanisms of hypertrophy and heart failure. My laboratory uses a strategy that combines state of the art molecular techniques to generate transgenic and gene targeted mouse models, combined with sophisticated physiologic measures of in vivo cardiac function. In this manner, candidate molecules are either selectively overexp
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University