Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The G-protein-coupled receptor kinases beta ARK1 and beta ARK2 are widely distributed at synapses in rat brain.

Thumbnail
View / Download
2.9 Mb
Date
1992-10
Authors
Arriza, JL
Dawson, TM
Simerly, RB
Martin, LJ
Caron, MG
Snyder, SH
Lefkowitz, RJ
Repository Usage Stats
310
views
257
downloads
Abstract
The beta-adrenergic receptor kinase (beta ARK) phosphorylates the agonist-occupied beta-adrenergic receptor to promote rapid receptor uncoupling from Gs, thereby attenuating adenylyl cyclase activity. Beta ARK-mediated receptor desensitization may reflect a general molecular mechanism operative on many G-protein-coupled receptor systems and, particularly, synaptic neurotransmitter receptors. Two distinct cDNAs encoding beta ARK isozymes were isolated from rat brain and sequenced. The regional and cellular distributions of these two gene products, termed beta ARK1 and beta ARK2, were determined in brain by in situ hybridization and by immunohistochemistry at the light and electron microscopic levels. The beta ARK isozymes were found to be expressed primarily in neurons distributed throughout the CNS. Ultrastructurally, beta ARK1 and beta ARK2 immunoreactivities were present both in association with postsynaptic densities and, presynaptically, with axon terminals. The beta ARK isozymes have a regional and subcellular distribution consistent with a general role in the desensitization of synaptic receptors.
Type
Journal article
Subject
Amino Acid Sequence
Animals
Brain
Brain Chemistry
Cyclic AMP-Dependent Protein Kinases
GTP-Binding Proteins
Molecular Sequence Data
Proteins
Rats
Synapses
beta-Adrenergic Receptor Kinases
Permalink
https://hdl.handle.net/10161/5918
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Caron

Marc G. Caron

James B. Duke Distinguished Professor of Cell Biology
Studies of the mechanisms of action and regulation of hormones and neurotransmitters at the cellular and molecular levels constitute the main goals our of research activities. G protein-coupled receptors (GPCR) mediate the actions of signaling molecules from unicellular organisms to man. We have used adrenergic and dopamine receptors to characterize the structure/function and regulation mechanisms of these prototypes of G protein-coupled receptors. Another approach has been to characterize
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Lefkowitz

Robert J. Lefkowitz

The Chancellor's Distinguished Professor of Medicine
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win. Robert J. Lefkowitz, M.D. is James B. Duke Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University