Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

β-Adrenergic Receptor Kinase-1 Levels in Catecholamine-Induced Myocardial Hypertrophy

Thumbnail
View / Download
528.6 Kb
Date
1999-01
Authors
Iaccarino, G
Dolber, PC
Lefkowitz, RJ
Koch, WJ
Repository Usage Stats
359
views
294
downloads
Abstract
Pressure overload ventricular hypertrophy is accompanied by dysfunctional β-adrenergic receptor signaling due to increased levels of the β-adrenergic receptor kinase-1, which phosphorylates and desensitizes β-adrenergic receptors. In this study, we examined whether increased β-adrenergic receptor kinase 1 expression is associated with myocardial hypertrophy induced by adrenergic stimulation. With use of implanted mini-osmotic pumps, we treated mice with isoproterenol, phenylephrine, or vehicle to distinguish between α1- and β-adrenergic stimulation. Both treatments resulted in cardiac hypertrophy, but only isoproterenol induced significant increases in β-adrenergic receptor kinase-1 protein levels and activity. Similarly, in isolated adult rat cardiac myocytes, 24 hours of isoproterenol stimulation resulted in a significant 2.8-fold increase in β-adrenergic receptor kinase-1 protein levels, whereas 24 hours of phenylephrine treatment did not alter β-adrenergic receptor kinase-1 expression. Our results indicate that increased β-adrenergic receptor kinase-1 is not invariably associated with myocardial hypertrophy but apparently is controlled by the state of β-adrenergic receptor activation.
Type
Journal article
Subject
myocardial hypertrophy
β-adrenergic receptor
G protein–coupled receptor kinases
desensitization
catecholamines
Permalink
https://hdl.handle.net/10161/5937
Published Version (Please cite this version)
10.1161/01.HYP.33.1.396
Citation
Iaccarino, G., P. C. Dolber, et al. (1999). "β-Adrenergic Receptor Kinase-1 Levels in Catecholamine-Induced Myocardial Hypertrophy." Hypertension 33(1): 396-401.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lefkowitz

Robert J. Lefkowitz

The Chancellor's Distinguished Professor of Medicine
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win. Robert J. Lefkowitz, M.D. is James B. Duke Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University