Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Psychology and Evolution of Foraging Skills in Primates

Thumbnail
View / Download
9.9 Mb
Date
2012
Author
Rosati, Alexandra
Advisor
Hare, Brian
Repository Usage Stats
485
views
288
downloads
Abstract

Primates in the wild face complex foraging decisions where they must assess the most valuable of different potential resources to exploit, as well recall the location of options that can be widely distributed. While differences in diet and ecology have long been thought to be an important factor influencing brain evolution in primates, it is less well understood what psychological abilities animals actually use when making foraging decisions. This dissertation examines cognitive domains that play a crucial role in supporting foraging behaviors--spatial memory and decision-making--by integrating both psychological and biological approaches to behavior. In particular, the research presented here examines multiple species of primates to address the cognitive skills that different animals use to solve foraging problems (at the proximate level of analysis), as well as why some species appear to solve such problems differently than other species (at the ultimate level of analysis).

The first goal of the dissertation is to compare closely-related species that vary in ecological characteristics, in order to illuminate how evolution shapes the cognitive skills used in foraging contexts. This component focuses on comparisons between chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), humans' closest extant relatives. In addition, this component reports comparisons amongst strepsirrhines (Lemur catta, Eulemur mongoz, Propithecus coquereli, and Varecia subsp.) to model cognitive evolution in a taxonomic group with greater ecological diversity than Pan. The first two chapters test the hypothesis that more frugivorous species exhibit more accurate spatial memory skills, first by comparing apes' spatial memory abilities (Chapter 2), and then by comparing four species of lemurs on a related set of spatial memory tasks (Chapter 3). In subsequent chapters, I examine apes' decision-making strategies to test the hypothesis that chimpanzees are more willing to pay decision-making costs than are bonobos, due to differences in their feeding ecology. I focus on preferences about the timing of payoffs (Chapter 4); preferences about risk, or the variability in payoffs (Chapters 4 and 5); and preferences about ambiguity, or knowledge about available options (Chapter 6).

The second goal of the dissertation is to compare the psychological mechanisms that human and nonhuman great apes use for foraging, in order to identify potentially human-unique cognitive abilities. In terms of spatial memory, I examine whether other apes also exhibit human-like patterns of spatial memory development (Chapter 2). In terms of decision-making, I examine whether apes exhibit a suite of human-like biases when making value-based choices. In particular, I test whether emotional and motivational processes, which are critical components of human decision-making, also play a role in apes' choices (Chapters 4); whether apes are sensitive to social context when making economic decisions (Chapter 5); and whether apes are sensitive to their degree of knowledge when making choices under uncertainty (Chapter 6). Finally, I directly compare human and ape preferences on a matched task to assess whether humans use any unique psychological abilities when making decisions about risk (Chapter 7). In sum, this dissertation links studies of mechanism with hypotheses about function in order to illuminate the evolutionary roots of human's unique cognitive phenotype.

Type
Dissertation
Department
Evolutionary Anthropology
Subject
Animal behavior
Psychology
Evolution & development
apes
cognitive evolution
decision-making
lemurs
spatial memory
Permalink
https://hdl.handle.net/10161/6142
Citation
Rosati, Alexandra (2012). The Psychology and Evolution of Foraging Skills in Primates. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/6142.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University