Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TrkB and Epileptogenesis

Thumbnail
View / Download
3.7 Mb
Date
2008-04-09
Author
Kotloski, Robert
Advisor
McNamara, James O
Repository Usage Stats
324
views
235
downloads
Abstract

Discovering the cellular and molecular mechanisms underlying the pathophysiology underlying the development of epilepsy is key to the creation of improved treatments. The neurotrophins and their receptors, in particular BDNF and TrkB, are likely candidates to be involved in the process by which a normal brain becomes epileptic (epileptogenesis). The work presented in the dissertation has investigated the hypothesis that TrkB is a central factor in epileptogenesis in multiple animal models of epilepsy.

Conditional deletion of TrkB in the Syn-Cre TrkB-/- mouse prevented nearly all epileptogenesis in the kindling model, despite the ability to have a tonic-clonic seizure. Reduction of TrkB de novo in mature Act-CreER TrkB-/- mice also delayed epileptogenesis in the kindling model. Additionally, Syn-Cre TrkB+/- and Act-CreER TrkB-/- mice had impaired persistence of the hyperexcitable state following kindling. It remained unclear from these findings whether reduction of TrkB during and/or following induction of kindling was responsible for the impaired persistence. The inducible Act-CreER TrkBflox/flox mice were used to reduce TrkB only after the fully kindled state had been reached and demonstrated that loss of TrkB after completion of kindling impairs persistence of the hyperexcitable state.

Status epilepticus is a medical emergency defined by prolonged continuous seizure activity. Conditional deletion of TrkB in the Syn-Cre TrkB-/- mice prevents sustained seizure activity evident in wild type mice following pilocarpine injection. Furthermore, the Syn-Cre TrkB-/- mice may also retain greater sensitivity to diazepam following status epilepticus than control mice. Together with biochemical evidence of TrkB activation during status epilepticus, these findings suggest that TrkB activation is required for persistence of status epilepticus.

In conclusion, the findings in this dissertation demonstrate TrkB to be a molecular mechanism critical for: 1) epileptogenesis in the kindling model; 2) persistence of hyperexcitability in the kindling model; 3) persistence of limbic status epilepticus in a chemoconvulsant model. These discoveries provide the basis for developing novel therapeutic approaches to three distinct and devastating aspects of the limbic epilepsy in humans. These aspects are: 1) preventing progression of limbic epilepsy to a medically refractory state; 2) reversal of medically refractory limbic epilepsy; 3) medically refractory status epilepticus.

Type
Dissertation
Department
Neurobiology
Subject
Biology, Neuroscience
Permalink
https://hdl.handle.net/10161/664
Citation
Kotloski, Robert (2008). TrkB and Epileptogenesis. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/664.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University