Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative Analysis of Decoupling, Distributed Generation, and Net Energy Metering

Thumbnail
View / Download
926.4 Kb
Date
2013-04-26
Author
Millar, David
Advisor
Patiño-Echeverri, Dalia
Repository Usage Stats
552
views
3,933
downloads
Abstract
Rapidly declining costs of rooftop solar systems and government incentives are helping to put increasing amounts of electricity generation on the customer side of the meter. Deployment of customer owned distributed generation (DG) such as rooftop photovoltaics (PV) fundamentally upends the traditional utility business model. It forces utilities to buy electricity from their customers and therefore reduces their electricity sales and their revenue. In the past, some regulated utilities have managed revenue loss from reduced sales due to implementation of energy efficiency programs through a regulatory policy known as decoupling, which severs the link between retail sales and revenues through an alternative rate setting procedure. Could decoupling also make a utility indifferent to reduced sales due to high penetration distributed photovoltaic generation? In this study, a computer simulation model represents a generic utility from 2012 through 2035, to explore the effects of increased DG penetration with and without decoupling. The model outputs utility financial performance, ratepayer costs and benefits, and environmental emissions performance. Results suggest that under growing penetration of distributed PV generation, decoupling does protect utility financial performance compared with traditional ratemaking. However, in the long run it cannot inure the utility against loss of market share and rate base erosion. While PV imposes increased costs on the grid, ratepayers are better off due to deferral of investments in supply side energy and possibly capacity assets. Emissions of greenhouse gasses and criteria pollutants are reduced with high penetration PV. The study highlights the challenges ahead for updating the traditional utility business model for the 21st century should current trends continue to put customer owned generation within reach.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
Decoupling, distributed generation, net energy metering, utilities policy, modeling
Permalink
https://hdl.handle.net/10161/6858
Citation
Millar, David (2013). Quantitative Analysis of Decoupling, Distributed Generation, and Net Energy Metering. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/6858.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University