Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural Determinants of Post-transcriptional Protein Regulation as Modulators of Monoamine Signaling

Thumbnail
View / Download
3.1 Mb
Date
2008-06-23
Author
Murphy, Karen
Advisor
Caron, Marc G
Repository Usage Stats
299
views
589
downloads
Abstract

Monoamines were first discovered at the end of the 19th century when William Bates identified epinephrine (EPI) and noted its hemostatic effects. During the 20th century, norepinephrine (NE), dopamine (DA), and serotonin (5HT) were discovered in both the periphery and the brain. Due, in part, to the implication of monoamines in the etiology of a wide range of dysfunctions, the examination of their physiological functions became the subject of a considerable volume of research. Much progress has been made in describing the function and endogenous regulation of these systems, as well as their response to pharmacological intervention. However, many aspects of these systems remain unexplored. For example, though the role of pharmacological agents in regulating monoamine transporter function has been widely studied, relatively little is known about basal regulation in terms of protein processing and targeting. Similarly, the role of phosphorylation has been well characterized in the regulation of tyrosine hydroxylase (TH), but little is known about the regulation of the closely related tryptophan hydroxylases. The recent discovery of the second isoform of tryptophan hydroxylase (TPH2) has brought renewed interest to this field as the majority of this second isoform is centrally expressed and it contains an additional 41 amino acids at the N-terminus compared to TPH1, the peripheral enzyme. To increase the understanding of these aspects of monoamine signaling, this study characterizes the regulatory role played by the extended N-terminus of TPH2 using mutagenesis and cell culture systems and identifies determinants of monoamine transporter targeting and processing using the dopamine transporter (DAT) as a model. In chapter 2, we demonstrate that TPH2 is synthesized less efficiently and is also less stable than TPH1 when expressed in cultured cells. Furthermore, we identify a region centered upon amino acids 10-20 in TPH2 that appears responsible for the bulk of this difference. We also demonstrate here that phosphorylation of S19 in TPH2 results in increased TPH2 stability, and a consequent increase in 5HT production. Because this domain is unique to TPH2, these data provide evidence for selective regulation of brain 5HT synthesis. Based on measured uptake capacity and both visual and biochemical markers of protein localization, the results presented in chapter 3 suggest that a conserved YAAY motif in the C-tail of the monoamine transporters is essential for normal levels of membrane expression. We also demonstrate that disruption of this sequence interferes to some extent with the previously described hDAT/Hic-5 interaction. Together, the data presented here contribute to the understanding of the physiological regulation of brain monoaminergic signaling.

Type
Dissertation
Department
Neurobiology
Subject
Biology, Neuroscience
Chemistry, Biochemistry
Permalink
https://hdl.handle.net/10161/687
Citation
Murphy, Karen (2008). Structural Determinants of Post-transcriptional Protein Regulation as Modulators of Monoamine Signaling. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/687.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University