Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Duke Carbon Offsets Initiative: Energy Efficiency Carbon Offsets

Thumbnail
View / Download
1.5 Mb
Date
2013-04-26
Authors
Chen, Yunzhong
Chauhan, Sugandha
Lu, Aaron
Advisor
Kasibhatla, Prasad S.
Repository Usage Stats
469
views
158
downloads
Abstract
Duke University aims to achieve carbon neutrality by 2024 by a combination of efforts to reduce on campus energy consumption and off campus carbon offset generation. One of the offset options that DCOI is evaluating is energy efficiency retrofits in residential buildings leading to indirect emission reductions. The problem we have attempted to address in our project is how Duke University can identify potential carbon offset opportunities in terms of improving energy efficiency in homes and businesses and how these offsets can be verified and quantified. In order to determine the feasibility of energy efficiency carbon offsets the team started with evaluating data from a similar residential retrofitting project implemented by the City of Durham’s Sustainability Office. The pre and post retrofit energy consumption data from these houses was analyzed to determine the energy savings and resultant carbon emissions reduction. The average emission reduction obtained from this project was then used to determine the carbon price. This carbon price was used to conduct a comparative analysis with carbon prices found in the market, literature and regulations. The second step of the project involved studying energy efficiency retrofit projects that have been undertaken in other regions at various levels and sizes. The last question that this project aimed to answer was regarding the suitability of various financing mechanisms for the retrofitting project. In order to address this question a demand assessment survey was designed to determine the willingness of Duke employees to participate in such a program and pay for the retrofits. DCOI plans to conduct the survey in the foreseeable future. The results of our analysis showed that average electricity savings of 113.13 KWh per month can be generated through retrofits including air and duct sealing and insulation enhancement. The average cost of retrofit was determined to be $1/sq feet of heated area. Using this investment cost and annual savings, the carbon price was determined to be 133.37 $/metric ton of CO2 equivalent reduction. Sensitivity analysis conducted for this carbon price showed that the factors that had the largest impact on carbon price are the initial investment and annual energy savings. To further evaluate the results, we compared the City of Durham’s returns on investment in terms of energy reduction, 0.97 kWh/$, and in terms of greenhouse gas reduction, 0.00046 metric ton of CO2 equivalent/$, to returns on investment of 22 other residential energy efficiency programs around the U.S. The City of Durham program lies in the middle of the range of return on investment indicators. The calculated carbon price of 133.37 $/metric ton of CO2 equivalent reduction, compared to 13.00 $/metric ton of CO2 equivalent reduction median of 44 other carbon prices found in regulation, literature, and market is extremely high. The final set of recommendations provided to DCOI are based upon the results obtained from the City of Durham data analysis and the comparative programs and carbon price study along with the essential project requirements for meeting the Verified Carbon Standard carbon offset program criteria.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
DCOI
Carbon Offset
Energy Efficiency
Carbon Standards
Survey
Carbon Pricing
Permalink
https://hdl.handle.net/10161/6901
Citation
Chen, Yunzhong; Chauhan, Sugandha; & Lu, Aaron (2013). Duke Carbon Offsets Initiative: Energy Efficiency Carbon Offsets. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/6901.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    On the Utilization of Nitrogen-Centered Oxidants for the Oxidation of Carbon-Carbon and Carbon-Hydrogen Bonds 

    Shehata, Mina (2019)
    Research towards highly efficient, position-selective atom-transfer technologies is described. At the outset of this study, it was envisioned that a pendant directing group on organic substrates would direct functionalization ...
  • Photo-Enabled Synthesis of Carbon–Nitrogen and Remote Carbon–Carbon Bonds 

    Simons II, Robert Thomas (2021)
    Recent advances in photo-driven reactions have dramatically expanded thescope of transformations no longer exclusively dependent on thermal energy to drive cross-coupling activity of transition metal catalysts. Of these ...
  • Thumbnail

    Responses to EU Carbon Pricing: The Effect of Carbon Emissions Allowances on Renewable Energy Development in Advanced and Transitional EU Members 

    Dearing, Jack (2019-04-24)
    Using electricity price, generation, installed capacity, and carbon price data from the European Union from January 2015 to December 2018, this study finds that the carbon pricing in the European Union Emissions Trading ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University