Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of a Mouse Model of Soft Tissue Sarcoma: Intraoperative Molecular Imaging and miRNA Regulation of Metastasis

Thumbnail
View / Download
2.9 Mb
Date
2013
Author
Mito, Jeffrey
Advisor
Kirsch, David
Repository Usage Stats
419
views
945
downloads
Abstract

Soft Tissue Sarcomas are a rare group of mesenchymal tumors with over 50 recognized subtypes. These tumors are a diverse group of malignancies that primarily arise from the connective tissue, fat and muscle. In the United States, there are estimated to be approximately 11,000 new diagnoses a year with an annual mortality rate approaching 40%. Unfortunately, with such a diversity of subtypes of soft tissue sarcoma, and the relative scarcity of patient samples, there is a need for animal models that faithfully recapitulate the biology of these tumors. Such animal models would be useful for dissecting the underlying biology of soft tissue sarcomas and to evaluate novel therapies. One such model is the LSL-KrasG12D; p53Flox/Flox mouse model of soft tissue sarcoma. These tumors are generated in a spatial and temporally restricted fashion and closely mimic the natural history of human soft tissue sarcomas, including a predilection to develop lung metastases. Here I will characterize this model of soft tissue sarcoma by: 1) performing cross species genomic comparisons to show that the LSL-KrasG12D; p53Flox/Flox mouse model of soft tissue sarcoma most closely resembles Undifferentiated Pleomorphic Sarcoma , 2) utilizing this mouse model to identify cathepsin proteases as molecular markers of soft tissue sarcoma. I will then use cathepsin activated imaging probes for intraoperative molecular imaging to identify microscopic residual cancer in real time. Finally, 3) I identify a novel mechanism through which MAPK signaling regulates miRNA biogenesis and the development of distant metastases in the LSL-KrasG12D; p53Flox/Flox mouse model of soft tissue sarcoma.

Type
Dissertation
Department
Molecular Cancer Biology
Subject
Molecular biology
Oncology
Permalink
https://hdl.handle.net/10161/7096
Citation
Mito, Jeffrey (2013). Characterization of a Mouse Model of Soft Tissue Sarcoma: Intraoperative Molecular Imaging and miRNA Regulation of Metastasis. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/7096.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University