Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Cisplatin Delivery and Anti-tumor Efficacy Using Hyperthermia

Thumbnail
View / Download
5.9 Mb
Date
2013
Author
Landon, Chelsea Dawn
Advisor
Dewhirst, Mark W
Repository Usage Stats
985
views
537
downloads
Abstract

Mild hyperthermia (39°C-43°C) has numerous therapeutic benefits as an adjuvant therapy in the treatment of a variety of tumor types. Hyperthermia increases tumor blood flow and vascular permeability, promoting drug delivery and tumor oxygenation. Hyperthermia enhances the uptake and efficacy of numerous chemotherapeutic agents, including cisplatin, resulting in increased cytotoxicity. In addition to these biological responses, hyperthermia can be used as a drug-release trigger for temperature-sensitive nanoparticles, resulting in an improved and more targeted drug delivery system. Cisplatin was chosen because 1) it shows broad spectrum activity against a wide range of heatable cancers (i.e., those in sites such as the pancreas, colon and rectum, cervix and bladder, and 2) the same hyperthermic temperatures that enable temperature-sensitive lipsome-drug release also enhance cisplatin-induced cytotoxicity.

The role of hyperthermia in enhancing cisplatin delivery and cytotoxicity was investigated at both the cellular and tissue levels. While hyperthermia treatment is applicable to a variety of tumor types, the focus of this work was on bladder cancer. The synergistic effects of hyperthermia and cisplatin were investigated, along with the role of copper transport protein 1 (Ctr1) in this process. In addition, cisplatin was encapsulated within temperature-sensitive liposomes, which were used in combination with hyperthermia for targeted drug delivery. These studies demonstrated that the combination of cisplatin and hyperthermia improved drug delivery, and potentially anti-tumor efficacy, and that targeted delivery was enhanced through incorporation of temperature-sensitive liposomes. As many current methods for administering bladder hyperthermia have drawbacks, such as invasiveness and regional heating, the final aim of this study was to develop and test a less-invasive and more focused preclinical bladder heating device in a rat model.

Hyperthermia sensitizes cells to the cytotoxic effects of the commonly used chemotherapeutic agent cisplatin by increasing drug accumulation and subsequent platinum-DNA adduct formation. However, the molecular mechanisms underlying this enhancement remain unclear. Understanding the fundamental mechanisms involved in the synergistic interaction is necessary to increase the therapeutic benefits of this combination in the clinic. The synergism between the anti-cancer benefits of cisplatin and the drug delivery benefits of hyperthermia may offer a novel and more effective treatment for many cancer patients. We hypothesized that hyperthermia increases cisplatin accumulation and efficacy in part by modulating the function of Ctr1, a major regulator of cellular cisplatin uptake. To test this hypothesis, we examined the significance of Ctr1 during combined hyperthermia and cisplatin therapies and assessed the importance of cisplatin- and hyperthermia-induced Ctr1 multimerization in enhancing cisplatin cytotoxicity. We observed increased Ctr1 multimerization following hyperthermia treatment (41°C) in vitro, compared to normothermic controls (37°C), suggesting that this may be a mechanism for increased cisplatin uptake in heat-treated cells. The impact of increased Ctr1 multimerization was evaluated by measuring platinum accumulation in wild-type (WT) and Ctr1-/- cells. WT cells contained greater levels of platinum compared to Ctr1-/- cells. A further increase in platinum was observed following hyperthermia treatment, but only in the WT cells. Hyperthermia enhanced cisplatin-mediated cytotoxicity in WT cells with a dose-modifying factor (DMF) of 1.8 compared to 1.4 in Ctr1-/- cells. Our data suggest that heat increases Ctr1 activity by increasing multimerization, resulting in enhanced drug accumulation. Although we recognize that the effect of heat on cells is multi-factorial, our results support the hypothesis that Ctr1 is, in part, involved in the synergistic interaction observed with cisplatin and hyperthermia treatment.

In addition to assessing cisplatin delivery at the cellular level, we evaluated cisplatin delivery at the tissue level, using novel cisplatin-loaded temperature-sensitive liposomes. We hypothesized that delivering cisplatin encapsulated in liposomes under hyperthermic conditions would improve the pharmacokinetic profiles of cisplatin, increase drug delivery to the tumor, decrease normal tissue toxicity, and enhance the anti-tumor activity of cisplatin. We successfully prepared temperature-sensitive liposomes loaded with cisplatin and demonstrated that heat (42°C) sensitizes cisplatin-resistant cells to the cytotoxic effects of cisplatin in vitro.

Decreased toxicity was observed in animals treated with the cisplatin liposome (± heat) compared to the free drug treatments. A pharmacokinetic study of cisplatin-loaded temperature-sensitive liposomes and free drug was performed in tumor-bearing mice under normothermic and hyperthermic conditions. Cisplatin half-life in plasma was increased following liposome treatment compared to free cisplatin, and cisplatin delivery to the tumors was greatest in mice that received liposomal cisplatin under hyperthermia. These initial in vivo data demonstrate the potential effectiveness of this cisplatin-loaded liposome formulation in the treatment of certain types of cancer. To assess the anti-cancer efficacy of the liposome treatment, a tumor growth delay study was conducted and demonstrated equivalent efficacy for the cisplatin-loaded temperature-sensitive liposome compared to free drug.

In addition to the liposome work, we developed and evaluated a novel heating device for the bladder. Despite the evidence that hyperthermia is an effective adjuvant treatment strategy, current clinical heating devices are inadequate, warranting the development of a new and improved system. We induced hyperthermia using ferromagnetic nanoparticles and an alternating magnetic field device developed by Actium Biosystems. Initial preclinical studies in a rat model demonstrated preferential bladder heating. However, our preliminary studies show severe toxicity with the direct instillation of the nanoparticles in the bladder, and further studies are needed to potentially modify the nanoparticle coating, the catheterization procedure, as well as to develop a different animal model.

Type
Dissertation
Department
Pathology
Subject
Pathology
Oncology
bladder cancer
cisplatin
Ctr1
hyperthermia
temperature-sensitive liposomes
Permalink
https://hdl.handle.net/10161/7174
Citation
Landon, Chelsea Dawn (2013). Enhancing Cisplatin Delivery and Anti-tumor Efficacy Using Hyperthermia. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/7174.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University