Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electronically reconfigurable metal-on-silicon metamaterial

Thumbnail
View / Download
1.2 Mb
Date
2012-08-08
Authors
Urzhumov, Y
Lee, JS
Tyler, T
Dhar, S
Nguyen, V
Jokerst, NM
Schmalenberg, P
Smith, DR
Show More
(8 total)
Repository Usage Stats
234
views
363
downloads
Abstract
Reconfigurable metamaterial-based apertures can play a unique role in both imaging and in beam-forming applications, where current technology relies mostly on the fabrication and integration of large detector or antenna arrays. Here, we report the experimental demonstration of a voltage-controlled, silicon-based electromagnetic metamaterial operating in the W-band (75-110 GHz). In this composite semiconductor metamaterial, patterned gold metamaterial elements serve both to manage electromagnetic wave propagation while simultaneously acting as electrical Schottky contacts that control the local conductivity of the semiconductor substrate. The active device layers consist of a patterned metal on a 2-μm-thick n-doped silicon layer, adhesively bonded to a transparent Pyrex wafer. The transmittance of the composite metamaterial can be modulated over a given frequency band as a function of bias voltage. We demonstrate a quantitative understanding of the composite device through the application of numerical approaches that simultaneously treat the semiconductor junction physics as well as wave propagation. © 2012 American Physical Society.
Type
Journal article
Permalink
https://hdl.handle.net/10161/7573
Published Version (Please cite this version)
10.1103/PhysRevB.86.075112
Publication Info
Urzhumov, Y; Lee, JS; Tyler, T; Dhar, S; Nguyen, V; Jokerst, NM; ... Smith, DR (2012). Electronically reconfigurable metal-on-silicon metamaterial. Physical Review B - Condensed Matter and Materials Physics, 86(7). pp. 075112. 10.1103/PhysRevB.86.075112. Retrieved from https://hdl.handle.net/10161/7573.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Jokerst

Nan Marie Jokerst

J. A. Jones Distinguished Professor of Electrical and Computer Engineering
Dr. Nan Marie Jokerst is the J. A. Jones Distinguished Professor of Electrical and Computer Engineering at Duke University, and the Executive Director of the Duke Shared Materials Instrumentation Facility, a Duke shared cleanroom and characterization facility. She received her BS in Physics from Creighton University in 1982, and her MS and PhD in Electrical Engineering from the University of Southern California in 1984 and 1989, respectively. She is a Fellow of the IEEE, and has served as an el
Smith

David R. Smith

James B. Duke Distinguished Professor of Electrical and Computer Engineering
Dr. David R. Smith is currently the James B. Duke Professor of Electrical and Computer Engineering Department at Duke University. He is also Director of the Center for Metamaterials and Integrated Plasmonics at Duke and holds the positions of Adjunct Associate Professor in the Physics Department at the University of California, San Diego, and Visiting Professor of Physics at Imperial College, London. Dr. Smith received his Ph.D. in 1994 in Physics from the University of California, San Dieg
Urzhumov

Yaroslav A. Urzhumov

Adjunct Assistant Professor in the Department of Electrical and Computer Engineering
<!--[if gte mso 9]> <![endif]--> <!--[if gte mso 9]> <![endif]-->Dr. Urzhumov is Adjunct Assistant Professor of ECE at Duke University, and also a Technologist at the Metamaterials Commercialization Center of Intellectual Ventures. Previously a research faculty at Duke, he works on applied and theoretical aspects of metama
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University