Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A beta-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination.

Thumbnail
View / Download
1.2 Mb
Date
1993-02-15
Authors
Schleicher, S
Boekhoff, I
Arriza, J
Lefkowitz, RJ
Breer, H
Repository Usage Stats
327
views
126
downloads
Abstract
We have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.
Type
Journal article
Subject
Animals
Antibodies
Cerebral Cortex
Chemoreceptor Cells
Cilia
Cyclic AMP-Dependent Protein Kinases
Epithelium
Heparin
Immune Sera
Kinetics
Odorants
Olfactory Pathways
Organ Specificity
Phosphorylation
Protein Kinase Inhibitors
Protein Kinases
Rats
Rats, Sprague-Dawley
Receptors, Adrenergic, beta
Signal Transduction
Smell
Time Factors
beta-Adrenergic Receptor Kinases
Permalink
https://hdl.handle.net/10161/7848
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lefkowitz

Robert J. Lefkowitz

James B. Duke Distinguished Professor of Medicine
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win. Robert J. Lefkowitz, M.D. is James B. Duke Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    MEK inhibitors, novel anti-adhesive molecules, reduce sickle red blood cell adhesion in vitro and in vivo, and vasoocclusion in vivo. 

    Zennadi, Rahima (PLoS One, 2014)
    In sickle cell disease, sickle erythrocyte (SSRBC) interacts with endothelial cells, leukocytes, and platelets, and activates coagulation and inflammation, promoting vessel obstruction, which leads to serious life-threatening ...
  • Thumbnail

    Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. 

    Eckhart, AD; Duncan, SJ; Penn, RB; Benovic, JL; Lefkowitz, RJ; Koch, WJ (Circ Res, 2000-01-07)
    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has ...
  • Thumbnail

    Monoclonal antibodies reveal receptor specificity among G-protein-coupled receptor kinases. 

    Oppermann, M; Diversé-Pierluissi, M; Drazner, MH; Dyer, SL; Freedman, NJ; Peppel, KC; Lefkowitz, RJ (Proc Natl Acad Sci U S A, 1996-07-23)
    Guanine nucleotide-binding regulatory protein (G protein)-coupled receptor kinases (GRKs) constitute a family of serine/threonine kinases that play a major role in the agonist-induced phosphorylation and desensitization ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University