Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thin low-loss dielectric coatings for free-space cloaking

Thumbnail
View / Download
613.7 Kb
Date
2013-05-03
Authors
Urzhumov, Yaroslav
Landy, Nathan
Driscoll, Tom
Basov, Dimitri
Smith, David R
Repository Usage Stats
485
views
775
downloads
Abstract
We report stereolithographic polymer-based fabrication and experimental operation of a microwave X-band cloaking device. The device is a relatively thin (about one wavelength thick) shell of an air dielectric composite, in which the dielectric component has negligible loss and dispersion. In a finite band (9.7–10.1 GHz), the shell eliminates the shadow and strongly suppresses scattering from a conducting cylinder of six-wavelength diameter for TE-polarized free-space plane waves. The device does not require an immersion liquid or conducting ground planes for its operation. The dielectric constant of the polymer is low enough (ϵ 2.45) to suggest that this cloaking technique would be suitable for higher frequency radiation, including visible light.
Type
Journal article
Subject
(160.5470) Polymers; (290.1350) Backscattering; (290.3200) Inverse scattering; (350.4010) Microwaves; (050.6624) Subwavelength structures; (290.2558) Forward scattering.
Permalink
https://hdl.handle.net/10161/7861
Published Version (Please cite this version)
10.1364/OL.38.001606
Publication Info
Urzhumov, Yaroslav; Landy, Nathan; Driscoll, Tom; Basov, Dimitri; & Smith, David R (2013). Thin low-loss dielectric coatings for free-space cloaking. 10.1364/OL.38.001606. Retrieved from https://hdl.handle.net/10161/7861.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Smith

David R. Smith

James B. Duke Distinguished Professor of Electrical and Computer Engineering
Dr. David R. Smith is currently the James B. Duke Professor of Electrical and Computer Engineering Department at Duke University. He is also Director of the Center for Metamaterials and Integrated Plasmonics at Duke and holds the positions of Adjunct Associate Professor in the Physics Department at the University of California, San Diego, and Visiting Professor of Physics at Imperial College, London. Dr. Smith received his Ph.D. in 1994 in Physics from the University of California, San D
Urzhumov

Yaroslav A. Urzhumov

Adjunct Assistant Professor in the Department of Electrical and Computer Engineering
<!--[if gte mso 9]> <![endif]--> <!--[if gte mso 9]> <![endif]-->Dr. Urzhumov is Adjunct Assistant Professor of ECE at Duke University, and also a Technologist at the Metamaterials Commercialization Center of Intellectual Ventures. Previously a research faculty at Duke, he works on applied and theoretical aspects of metama
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University