Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor.

Thumbnail
View / Download
1.3 Mb
Date
1988-10
Authors
Cotecchia, S
Schwinn, DA
Randall, RR
Lefkowitz, RJ
Caron, MG
Kobilka, BK
Repository Usage Stats
173
views
194
downloads
Abstract
The cDNA for the Syrian hamster alpha 1-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the receptor protein purified from DDT1MF-2 smooth muscle cells. The deduced amino acid sequence encodes a 515-residue polypeptide that shows the most sequence identity with the other adrenergic receptors and the putative protein product of the related clone G-21. Similarities with the muscarinic cholinergic receptors are also evident. Expression studies in COS-7 cells confirm that we have cloned the alpha 1-adrenergic receptor that couples to inositol phospholipid metabolism.
Type
Journal article
Subject
Animals
Base Sequence
Cloning, Molecular
Cricetinae
DNA
GTP-Binding Proteins
Gene Expression Regulation
Molecular Sequence Data
Phosphatidylinositols
Receptors, Adrenergic, alpha
Permalink
https://hdl.handle.net/10161/7870
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Caron

Marc G. Caron

James B. Duke Distinguished Professor of Cell Biology
Studies of the mechanisms of action and regulation of hormones and neurotransmitters at the cellular and molecular levels constitute the main goals our of research activities. G protein-coupled receptors (GPCR) mediate the actions of signaling molecules from unicellular organisms to man. We have used adrenergic and dopamine receptors to characterize the structure/function and regulation mechanisms of these prototypes of G protein-coupled receptors. Another approach has been to characterize
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Lefkowitz

Robert J. Lefkowitz

James B. Duke Distinguished Professor of Medicine
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win. Robert J. Lefkowitz, M.D. is James B. Duke Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University