Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impaired formation of beta-adrenergic receptor-nucleotide regulatory protein complexes in pseudohypoparathyroidism.

Thumbnail
View / Download
1.5 Mb
Date
1984-05
Authors
Heinsimer, JA
Davies, AO
Downs, RW
Levine, MA
Spiegel, AM
Drezner, MK
De Lean, A
Wreggett, KA
Caron, MG
Lefkowitz, RJ
Show More
(10 total)
Repository Usage Stats
307
views
313
downloads
Abstract
Decreased activity of the guanine nucleotide regulatory protein (N) of the adenylate cyclase system is present in cell membranes of some patients with pseudohypoparathyrodism (PHP-Ia) whereas others have normal activity of N (PHP-Ib). Low N activity in PHP-Ia results in a decrease in hormone (H)-stimulatable adenylate cyclase in various tissues, which might be due to decreased ability to form an agonist-specific high affinity complex composed of H, receptor (R), and N. To test this hypothesis, we compared beta-adrenergic agonist-specific binding properties in erythrocyte membranes from five patients with PHP-Ia (N = 45% of control), five patients with PHP-Ib (N = 97%), and five control subjects. Competition curves that were generated by increasing concentrations of the beta-agonist isoproterenol competing with [125I]pindolol were shallow (slope factors less than 1) and were computer fit to a two-state model with corresponding high and low affinity for the agonist. The agonist competition curves from the PHP-Ia patients were shifted significantly (P less than 0.02) to the right as a result of a significant (P less than 0.01) decrease in the percent of beta-adrenergic receptors in the high affinity state from 64 +/- 22% in PHP-Ib and 56 +/- 5% in controls to 10 +/- 8% in PHP-Ia. The agonist competition curves were computer fit to a "ternary complex" model for the two-step reaction: H + R + N in equilibrium HR + N in equilibrium HRN. The modeling was consistent with a 60% decrease in the functional concentration of N, and was in good agreement with the biochemically determined decrease in erythrocyte N protein activity. These in vitro findings in erythrocytes taken together with the recent observations that in vivo isoproterenol-stimulated adenylate cyclase activity is decreased in patients with PHP (Carlson, H. E., and A. S. Brickman, 1983, J. Clin. Endocrinol. Metab. 56:1323-1326) are consistent with the notion that N is a bifunctional protein interacting with both R and the adenylate cyclase. It may be that in patients with PHP-Ia a single molecular and genetic defect accounts for both decreased HRN formation and decreased adenylate cyclase activity, whereas in PHP-Ib the biochemical lesion(s) appear not to affect HRN complex formation.
Type
Journal article
Subject
Adenylyl Cyclases
Adolescent
Adult
Binding Sites
Child
Erythrocyte Membrane
Female
Humans
Iodine
Male
Middle Aged
Pindolol
Pseudohypoparathyroidism
Receptors, Adrenergic, beta
Permalink
https://hdl.handle.net/10161/7881
Published Version (Please cite this version)
10.1172/JCI111336
Publication Info
Heinsimer, JA; Davies, AO; Downs, RW; Levine, MA; Spiegel, AM; Drezner, MK; ... Lefkowitz, RJ (1984). Impaired formation of beta-adrenergic receptor-nucleotide regulatory protein complexes in pseudohypoparathyroidism. J Clin Invest, 73(5). pp. 1335-1343. 10.1172/JCI111336. Retrieved from https://hdl.handle.net/10161/7881.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Caron

Marc G. Caron

James B. Duke Distinguished Professor of Cell Biology
Studies of the mechanisms of action and regulation of hormones and neurotransmitters at the cellular and molecular levels constitute the main goals our of research activities. G protein-coupled receptors (GPCR) mediate the actions of signaling molecules from unicellular organisms to man. We have used adrenergic and dopamine receptors to characterize the structure/function and regulation mechanisms of these prototypes of G protein-coupled receptors. Another approach has been to characterize
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Lefkowitz

Robert J. Lefkowitz

The Chancellor's Distinguished Professor of Medicine
Dr. Lefkowitz’s memoir, A Funny Thing Happened on the Way to Stockholm, recounts his early career as a cardiologist and his transition to biochemistry, which led to his Nobel Prize win. Robert J. Lefkowitz, M.D. is James B. Duke Professor of Medicine and Professor of Biochemistry and Chemistry at the Duke University Medical Center. He has been an Investigator of the
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University